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Abstract

Linear Genetic Programming (LGP) is a paradigm of genetic programming
that employs a representation of linearly sequenced instructions in automatically
generated programs. A linear approach lends itself to programs which have two unique
attributes: a graph-based functional structure and the existence of non-effective
instructions.
Motivated by the lack of existing implementations, an LGP system is developed and
released into the open-source community. The system has a modern design with
emphasis on correctness, ease of use, and extensibility. This work discusses LGP
concepts and the implementation of a modern LGP system.
The system built is evaluated on a set of symbolic regression benchmark problems
to ensure performance and correctness of the implementation. Three rounds of
experiments demonstrate (1) the effects of different configurations of the system, (2) a
comparison of different evolutionary algorithm performance within the system, and (3)
the equivalence to a traditional tree-based GP approach and linear regression model.
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1 Introduction

The desire for a system which can automatically craft computer programs has been
known in the machine learning community for some time. Friedberg (1958) exper-
imented with a system that solved problems by randomly changing instructions in
a program and favouring those changes which most frequently achieved a positive
result. Further work by Fogel, Owens, & Walsh (1966) applied simulated evolution to
finite-state machines in a technique titled Evolutionary Programming.

Genetic Programming (GP) borrows concepts from evolutionary biology in order to
optimize computer programs towards a particular goal. Individuals within a population
are exposed to the processes of Darwinian natural selection, sexual recombination
(genetic crossover), and mutation which lead to a change in characteristics over
successive generations by exploiting differential fitness advantages in order to survive
(Koza, 1994). GP as traditionally described utilizes a tree-based representation in
which programs correspond to expressions in a functional programming language
(Brameier & Banzhaf, 2007).

GP has been used successfully to solve machine learning problems across a wide
range of domains including but not limited to robotics (Luke, 1998), image processing
(Poli & Cagnoni, 1997), traditional software engineering (Langdon & Harman, 2015),
and combination optimization problems (Jacobsen-Grocott, Mei, Chen, & Zhang,
2017).

Linear Genetic Programming (referred to as LGP from here) is a variant of GP
where individuals in the population adopt an imperative program structure. The term
“linear” refers specifically to the structure of the program and does not limit the type
of problems that LGP can be used to solve (Brameier & Banzhaf, 2007).

There are two primary features which differentiate LGP from a traditional tree-
based approach (Brameier & Banzhaf, 2007): first, LGP programs exhibit a unique
graph-based data flow due to the way the contents of a particular register may be used
multiple times during a programs execution. This leads to program graphs with higher
variability thus enabling program solutions which are more compact in comparison to
tree-based solutions to evolve.

Secondly, special non-effective code coexists with a program’s effective code as a
result of the imperative structure. Non-effective code refers to instructions within
an LGP program which do not impact the program output. These non-effective
instructions guard the effective instructions from disruption caused by the genetic
operator application and allows variations to remain neutral in terms of a fitness
change. There is evidence that such neutral variations are beneficial; Yu & Miller
(2001) and Galvan-Lopez & Rodriguez-Vazquez (2006) show that there is a positive
relationship between neutrality and evolvability and that neutrality tends to provide
better evolutionary process performance, respectively.

Brameier & Banzhaf (2007) outline a method that can be used to efficiently and
robustly detect and remove non-effective instructions.
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Listing 1 illustrates an LGP program that operates on a set of 8 registers. Instruc-
tions marked as comments with the // prefix are not effective and have no effect
on the programs output which is derived from the contents of register r[0] when
the program terminates. These commented instructions are shown for the purposes
of this example, however it should be noted that they are not part of the program
representation. Furthermore, the graph-based data flow is evident in the way registers
are reused through a program (e.g. registers r[0] and r[4]).

Effective Instruction An instruction in an LGP program is effective at its position
if and only if it influences the output(s) of the program for one or more of the
possible inputs.

Non-effective Instruction An instruction in an LGP program which has no influ-
ence on the output(s) for any of the possible inputs.

Listing 1 An example LGP program

1 void gp(double r[8]) {
2 ...
3 r[0] = r[5] + 71;
4 // r[7] = r[0] - 59;
5 if (r[1] > 0)
6 if (r[5] > 2)
7 r[4] = r[2] * r[1];
8 // r[2] = r[5] + r[4];
9 r[6] = r[4] * 13;

10 r[1] = r[3] / 2;
11 // if (r[0] > r[1])
12 // r[3] = r[5] * r[5];
13 r[7] = r[6] - 2;
14 // r[5] = r[7] + 15;
15 if (r[1] <= r[6])
16 r[0] = sin(r[7]);
17 }

As an example, the first instance of r[7] being used as a destination register (line
4) is marked as non-effective. Let the set Reff contain registers that are effective
at the current program position. Starting at the last program instruction, it can
be determined that r[7] is an effective register as it is used as the operand for the
instruction, thus it is added to Reff . The dependency analysis then involves moving
backwards through the program to find the first instruction with rdest ∈ Reff ; in this
case the instruction on line 13 uses r[7] as its destination register and therefore r[7]
is removed from Reff . As the analysis through the program continues, there are no
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more usages of r[7] as an operand register for an effective instruction. As a result,
when the instruction on line 4 is encountered, r[7] is not a member of Reff and hence
the instruction is non-effective.

Despite the benefits of LGP there is no robust open-source system for utilizing
its unique features in order to solve particular tasks. This is a stark contrast to
the wide landscape of available tools for utilizing a more traditional tree-based GP
representation. An open-source implementation which is flexible would fit this niche
and provide a foundation to base further work using LGP upon, preventing others
having to implement their own LGP system.

1.1 Motivation

The Open-Source Software (OSS) model describes a process that facilitates the
development of software by contributors from varying backgrounds, whose source code
can be modified and redistributed freely (Basili & Lonchamp, 2005).

With the rising popularity of open-source development (MacCormack, Rusnak, &
Baldwin, 2006), it is somewhat surprising that there is an apparent lack of a robust,
open-source solution for utilizing LGP – especially when considering the numerous
open-source, tree-based GP systems that are available.

Sonnenburg et al. (2007) state the importance of OSS within the context of machine
learning with regards to better reproducibility, innovative applications and the faster
integration of these techniques and methods into other disciplines and industry.

The goal of this work is to design, implement and benchmark a completely open-
source LGP system. The system attempts to satisfy the following attributes:

• Cross-platform support
• A flexible and adaptable architecture
• An API in a modern programming language
• Efficient implementations of the core LGP algorithms

The software produced has been released into the open-source community alongside
API and usage documentation using the GitHub platform. Any development in the
future will take place through the GitHub repository, allowing for others to contribute
as they wish. In addition, the implementation is verified on a collection of standard
benchmark problems to ensure its performance and correctness. It is intended that
the software provides a useful contribution to those who wish to use LGP over the
traditional tree-based approach.

1.2 Organization

The rest of the paper is organized as follows: Section 2 provides background information
on LGP to create a foundation for the further sections, related work on open-source

3



GP systems, as well as a review of usages of LGP. Section 3 discusses how the
problem is approached, including design decisions and their rationale as well as
implementation details and how these relate to the overall goal. The benchmarks and
their configurations are explained in Section 4 with the results and their corresponding
discussion presented in Section 5. Section 6 concludes the paper and gives directions
for any further work which could be done.

2 Background

This section concerns itself with the details of LGP in more depth, provides an
overview of other open-source GP systems and reviews recent LGP applications and
developments.

2.1 Symbolic Regression

Symbolic regression is the name given to the variant of regression analysis that involves
automatically building mathematical models that describe relationships on numeric
multivariate data sets (Vladislavleva, Smits, & Hertog, 2009). This is achieved by
exploring the search space of such expressions with the goal of gaining insight into
input variables that are related to changes in the output variables.

The initial expressions of a model are generated randomly from a user-defined
specification of mathematical operators and new models are formed by combining or
altering previous models (e.g. through genetic programming). The search continues
until the perfect model is found or the allotted computation time is exceeded. Symbolic
regression uses a fitness function to drive the evolution of models, typically optimising
for measures of accuracy or simplicity.

2.2 Overview of Linear Genetic Programming

Within the context of techniques for the evolution of computer programs there
are two main approaches as acknowledged by Banzhaf (1993): The first operates
by allowing programs to compete for computing resources such as CPU-time or
memory and has the potential to create interesting phenomena, such as parasitism and
symbiosis. Alternatively, the technique of Genetic Programming (sometimes referred
to as Evolutionary Programming) concerns itself with evolving programs in accordance
to behaviour described by a user’s particular requirements.

Since the introduction of genetic algorithms as a tool for solving optimization
problems, there has been a goal of evolving algorithms themselves using similar
techniques. Cramer (1985) begun with the investigation into using linear bit sequences
as a programming language that can be manipulated by genetic algorithms in order
to generate simple functions from basic computational primitives. Banzhaf (1993)
furthered this linear approach by using strings of linear op-codes that can be interpreted
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as programs and evolved using traditional genetic algorithm techniques to evolve
towards a certain goal.

Linear Genetic Programming (Brameier, 2004) is a variant of genetic programming
in which sequences of instructions from an imperative programming language (e.g. C
or machine) code are evolved. The linear structure does not limit the kind of problems
that LGP can solve as it can find solutions to highly non-linear problems. For example
the work of Guven (2009) utilized LGP to predict river daily flow rate data with a
high level of accuracy.

+

- sin

x2 x1 1.0

void gp(double r[6]) {

    r[2] = r[1] - r[0];

    r[3] = sin(r[6]);

    r[2] = r[2] + r[3];
}

Figure 1: Comparison of a tree-based program representation (left) with a linear
program representation (right). The LGP program is represented in the C programming
language as a function which takes a single array argument. The array supplied as
an argument to the LGP program is given by r = {x1, x2, 1.0, 1.0, 0.0, 1.0} such that
r[i] in the program code corresponds to the ith value of r (e.g. r[0] = r0 = x1).
Both programs compute the function f(x1, x2) = (x2 − x1) + sin(1.0).

The more general phenomena associated with the linear GP approach are explored
by Nordin & Banzhaf (1995) and Nordin, Francone, & Banzhaf (1996). Characteristics
that only arise from a linear approach are detailed by Brameier & Banzhaf (2007) as
well as implementation details regarding variation operators that take advantage of
the linear representation in order to produce better, more compact solutions.

The subsequent sections detail the core concepts of LGP as outlined by Brameier
& Banzhaf (2007) in order to provide a sufficient foundation for understanding the
rationale presented when discussing the design and implementation of the system.

2.2.1 Representation

LGP operates with imperative programs that consist of a variable-length sequence
of instructions which perform operations on the contents of a set of registers. These
operations manipulate the contents of the registers to facilitate calculations and
compute a result.

This approach is closely related to the underlying machine language, unlike tree-
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based GP. LGP programs reflect the von Neumann architecture that describes a system
of registers and basic instructions that effect those registers (Brameier & Banzhaf,
2007). One important implication of this particular representation is that programs
of such a register machine describe a sequence of instructions whose order has to be
observed during execution.

Each LGP program is provided a set of registers in order to facilitate its calculations
and store input values. The register set is in essence made up of three distinct sections
of registers.

Input Registers These hold a program’s inputs before execution. These dictate the
particular behaviour that the program is targeting. Typically these registers are
referred to as x1, x2, etc.

Calculation Registers A variable number of additional registers used to aid in
calculations performed as part of a program. Generally, these are initialized
with a default value before a program is executed.

Constant Registers A pre-defined number of registers which are loaded with con-
stant values and are write-protected.

One or more of the input or calculation registers are defined to be the output
register(s), allowing for the possibility of multiple program outputs (unlike a tree-
based approach).

Figure 2: An illustration of a register set comprised of two input registers, three
calculation registers, and three constant registers. The calculation registers are
initialised with a default value of 1.0 while the constant registers provide the values
[−1.0, 0.0, 1.0] to aid in computation. In the context of a program in the C programming
language, the contents would be accessed through array syntax (e.g. r[0] = x1 and
r[5] = −1.0)

Instructions in LGP are comprised of a single operation (i.e. function) and a set
of operand registers. In all cases, the result of an instruction will be stored in one
of the operand registers denoted as the destination register. The operation of a
particular instruction will vary but generally, operations are performed on one or two
operand registers called source registers. For example, the instruction ri := sin(rj)
has one source register (rj) and one destination register (ri) whereas the instruction
ri := rj + rk has two source registers (rj and rk) and one destination register (ri). It
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is also worth mentioning that an instruction could have its destination register as one
of its source registers, for example ri := ri + rj.

Brameier & Banzhaf (2007) note that in general, instructions which perform multiple
operations (e.g. ri := ri + rj + rk) do not necessarily increase the expressiveness and
variability of programs, and such a higher dimensional program structure introduces
an additional level of complexity with respect to the genetic operators.

Most commonly, LGP programs are represented as a sequence of instructions from
the C programming language. This allows for solutions to be applied directly to a
problem domain without the use of an interpreter for the genetic program solutions
as they can be directly compiled (Brameier & Banzhaf, 2007) - clearly an advantage
of LGP.

The instruction set given to LGP defines the particular programming language
for programs evolved. Traditionally an LGP system will provide a selection of
instructions such as basic arithmetic operations, exponential functions, trigonometric
functions, boolean operations and conditional branches. It is possible however to use
instructions tailored to the problem domain. For example, an LGP program could
consist of commands for directing a robot within a certain environment (Brameier &
Banzhaf, 2007). In general however, LGP employs instruction which are pure in the
mathematical sense as they do not introduce side-effects.

There are two invariants that must be satisfied by LGP in order to guarantee
that only valid programs are created, known as syntactic and semantic correctness.
The former involves ensuring that the effects of genetic operators — whether it be
mutation or recombination — maintain the correctness of the programs operated on.
LGP achieves this by treating instructions as atomic units such that crossover cannot
occur in the middle of an instruction, as well as restricting the parts of an instruction
that mutation operators can effect. For example, the + operation in the instruction
ri := rj + rk cannot be replaced with another register (e.g. ri := rjrirk), as this would
render the instruction invalid thus violating the program’s syntactic correctness.

The latter — semantic correctness — demands that operations which may have
undefined behaviour for certain inputs don’t jeopardize a program’s execution. This is
typically attained by defining a high constant return value for undefined inputs in an
attempt to penalize programs which make use of instructions with undefined inputs.
Table 1 provides examples of instructions that are protected from undefined inputs in
order to remain semantically valid in LGP.

Table 1: Examples of instructions that may be used by LGP with their corresponding
semantically valid definition. ri,j,k refer to the registers of an LGP program and
Cundefined is generally a high constant value (e.g. 106).

Instruction Semantically Valid Definition
ri := rj ÷ rk if (rk 6= 0) ri := rj ÷ rk else ri := rj + Cundefined

ri := rrk
j if (rk ≤ 10) ri := rrk

j else ri := rj + rk + Cundefined
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Instruction Semantically Valid Definition

ri := √rj ri =
√
|rj|

2.2.2 Execution

The cost of computation when using LGP is dominated by the evaluation of programs,
as is true with other GP systems. The reason for the high cost of evaluation is due to
the fact that each program requires multiple executions for each specific case that the
program is being tested against in order to evaluate its fitness.

Generally, execution relies on transforming a program’s internal representation
into some interpreted form that can be executed according to the semantics of that
programming language. A tree-based program is interpreted through traversing the
tree structure in a particular order, applying operators to values where appropriate.

LGP provides a method resulting from the structure of the linear programs that
can be applied to accelerate the execution of programs evolved. LGP programs have
the unique feature of containing instructions which are deemed non-effective (i.e. they
have no influence on the programs output). Such instructions can be found efficiently
and removed before a program is executed, decreasing the number of instructions
that are executed for each program. This effect is particularly advantageous when
there is a large number of cases in the training data used to tune the program’s target
behaviour.

2.2.3 Evolution

The algorithm detailed below forms the core evolutionary algorithm upon which LGP is
built (Brameier & Banzhaf, 2007). In this particular steady-state EA, offspring replace
existing individuals in the same population. This EA also utilises three separate sets
of fitness cases: training, validation, and test cases. All individuals are trained on the
training set to determine their fitness for the selection process of the algorithm. This
is supplemented by a validation step that is performed on the best-fit program, in
order to check the generalization ability of the solution. When the maximum number
of generations are reached, the program with the minimum validation error is tested
on the test data set.

1. Initialize a population of random programs.
2. Randomly select 2× n individuals from the population without replacement.
3. Perform two fitness tournaments of size n.
4. Make temporary copies of the two tournament winners.
5. Modify the two winners by one or more variation operators with certain proba-

bilities.
6. Evaluate the fitness of the two offspring.
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7. If the currently best-fit individual is replaced by one of the offspring, validate
the new best program using unknown data.

8. Reproduce the two tournament winners within the population with a certain
probability or under a certain condition by replacing the two tournament losers
with the temporary copies of the winners.

9. Repeat steps 2. to 8. until the maximum number of generations is reached.
10. Test the program with minimum validation error again.
11. Both the best program during training and the best program during validation

define the output of the algorithm.

There are essentially four primary phases involved in such an EA - Initialisation,
Selection, Variation, and Evaluation. These phases are described by Brameier &
Banzhaf (2007) within the context of LGP as follows.

Initialisation

An evolutionary algorithm begins by building an initial population of genetic programs,
normally achieved by randomly creating a number of valid programs. LGP defines an
upper and lower bound on the initial program length such that the length of programs
is randomly chosen from within these bounds with uniform probability.

It is important to find a balance between initial programs which are too short or
too long. Programs that have a small initial program length lack sufficient genetic
material to produce a diverse population, with this becoming particularly noticeable
within small populations or when crossover is the dominant variation operator. On the
contrary, initial programs that are too long may be more inflexible during evolutionary
manipulations (Brameier & Banzhaf, 2007), and as a result it can be difficult for the
EA to follow a search path from a complex region (e.g. a long program) to another
complex region (with better programs).

Selection

The algorithm listed above applies tournament selection in order to randomly determine
the individuals which will be subjected to the effects of the variation operators before
being reintroduced into the population. Listing 2 illustrates the basic tournament
selection algorithm as pseudo code for the case when fitness is being minimised. The
parameter k controls the size of the tournament and thus the selection pressure that
is imposed on the population individuals. A lower tournament size value corresponds
to lower selection pressure and thus weak individuals have a greater chance of being
selected. It is possible for a chosen individual to be removed from the population
when selected, which prevents the same individual being selected multiple times for
the next generation. LGP performs two tournaments in parallel in order to produce
two parent individuals for crossover.
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Listing 2 Tournament selection algorithm

1 def tournament_selection(population, k):
2 N = length(population)
3 winner = population[random(0, N - 1)]
4

5 for i = 1 to k - 1:
6 contender = population[random(0, N - 1)]
7

8 if fitness(contender) < fitness(winner):
9 winner = contender

10

11 return winner

Variation

Variation operators are search operators that generate new programs from existing
ones within a population. Two factors influence the variation of a population: firstly,
reproduction between individuals in a population shares genetic material between
solutions, with a bias towards genetic material that produces a gain in fitness. Secondly,
mutation involves altering a single individual with the goal of diversifying the genetic
material of the population.

Reproduction in LGP is achieved by combining two genetic programs using a linear
crossover method as illustrated by Figure 3. This requires exchanging a segment
of random position and length between two individuals. The crossover operator is
considered to be highly disruptive in terms of LGP programs, as the removal of a
subsequence of instructions could drastically alter the program’s function.

LGP further categorizes the variation operators into two categories (aside from
recombination operators): macro and micro operations respectively. Macro operations
are performed at the program level and are one of the primary means for varying
the length of genetic programs (alongside crossover). An example of such a macro
operator is the macro-mutation operator (Brameier & Banzhaf, 2007) which either
adds or removes instructions to a program based on a probabilistic model. The
macro-mutation operator is less destructive than an operator which exchanges chunks
of instructions, such as crossover, but can still be harmful to program function.

Micro operations are conducted at the instruction level and alter the particular
parameters that effect an instruction, including its operation, register(s), or constants.
An example of a micro operator is micro-mutation, which will randomly change either
an instructions destination or operand register(s), operation, or add a small amount of
noise to a constant register value. Micro-mutations are the least destructive mutation
and encourage small step sizes in terms of program function change.
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Figure 3: The method of crossover in LGP exchanges variable-length continuous
sequences of instructions between parents.

Within these categories, there is the possibility for macro/micro mutations which
only effect those instructions which have been marked as effective or mutations which
effect any instruction.

void gp(double r[6]) {
 
    r[2] = r[1] - r[0];
    // r[3] = sin(r[6]);
    r[2] = r[2] + r[0];

}

void gp(double r[6]) {
 
    r[2] = r[1] - r[0];
    r[3] = sin(r[6]);
    r[2] = r[2] + r[3];
    r[2] = r[2] * r[0];

}

void gp(double r[6]) {
 
    r[2] = r[1] - r[0];
    r[3] = sin(r[6]);
    r[2] = r[2] + r[3];

}

Figure 4: The left program is an unmodified LGP individual that represents the
function f(x1, x2) = (x2 − x1) + sin(1.0). The middle program illustrates the effects
of the macro-mutation operator, as an instruction has been added (shown by the
green highlight). This causes the function of the program to change to f(x1, x2) =
((x2 − x1) + sin(1.0)) × x1. The right program, demonstrates the application of
the micro-mutation operator which has changed one of the operand registers in the
last instruction, changing the function to f(x1, x2) = (x2 − x1) + x1. This has the
effect of rendering the previous instruction non-effective as the contents of r[3] are
no longer used. The values stored in the registers remain the same as in Figure 1
(r = {x1, x2, 1.0, 1.0, 0.0, 1.0}).
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Evaluation

Evaluation is the most time consuming portion of an evolutionary algorithm as it
involves executing each genetic program multiple times for each case provided as
training data. This system focuses on symbolic regression problems (see Section 2.1)
meaning that the evaluation process uses typical symbolic regression metrics. The
fitness of a program is measured by an error function over a set of fitness cases, which
define the problem that is desired to be solved or approximated by the programs.

The popular mean-squared error (MSE) function is given by Equation 1 and is an
example of a fitness function commonly used by LGP. In this case, gp refers to the
genetic program being measured, (~ik, ok) is a set of n input-output fitness cases, and
gp(~ik) is the predicted output of gp on the inputs ~ik.

MSE(gp) = 1
n

n∑
k=1

(gp(~ik)− ok)2 (1)

2.2.4 Characteristics

LGP originates somewhat from the desire to build a genetic programming system in
which the genetic programs do not have to undergo an expensive interpretation phase,
in an attempt to lessen the computational cost expended when evaluating the fitness
of programs. However, as alluded to previously, LGP has other characteristics that
arise as an artefact of the linear representation — these are explored here.

Introns are subsequences that exist within strings of DNA that hold information not
expressed in the phenotype of an organism. As mentioned earlier, genetic programs
consist of code that is either crucial in manipulating the program’s output or is
redundant and has no effect. Like their natural counterpart, these program introns
may reduce the destructive influence of variations on the effective instructions of a
program (Brameier & Banzhaf, 2007). LGP distinguishes between instructions which
are effective and those are that are non-effective as follows.

Brameier & Banzhaf (2007) further categorize introns into structural and semantic
introns. Structural introns are those described by non-effective instructions, where the
code has no influence on the output of the program. In essence, these instructions are
not connected to the output node of the graph that an LGP program represents. With
a traditional tree-based GP approach, structural introns do not exist as instructions
are always connected to the root of the tree. Semantic introns are instructions which
do operate on registers affecting the output (so-called effective registers), but the
operation which they perform is considered a no-op - in other words, the registers the
instruction operates on remain the same before and after the instruction has been
executed. For example, if r0 is an effective register then the instruction r0 := r0 × 1 is
a semantic intron as it does not alter the value stored in r0.

While Brameier & Banzhaf (2007) propose an algorithm that can efficiently and
robustly detect structural introns, a similar algorithm for finding semantic introns has

12



high cost and relies on a probabilistic model. This algorithm requires a computation
time of O(m · n2) where m refers to the number of fitness cases and n is the length of
the program, which is deemed too inefficient for removing introns at runtime and thus
is not considered in this system.

A secondary characteristic of the linear representation as hinted earlier is that on
the functional level, a LGP program defines a directed acyclic graph giving programs
a graph-based data flow. These graphs can have a higher amount of variability than
the tree structures used by a tree-based GP approach and the evolution of sub-graphs
leads to a number of parallel calculation paths that is determined by the number of
registers made available to an LGP program; a higher number of registers decreases
the likeliness of a write conflict between sub-graphs allowing for a further degree of
independent program sub-graphs (i.e. modularity; Brameier & Banzhaf (2007)).

2.3 Open-Source Genetic Programming

In the context of Genetic Programming, there is an array of different systems and
implementations for applying GP to a problem. While the majority of these are built
upon tree-based GP, there are a few offerings using techniques similar to LGP, and one
LGP implementation. This section provides an overview of the different GP offerings
and how they relate to the system built.

ECJ (Luke, 2010) is a system for evolutionary computation written in Java which
focuses on flexibility and efficiency. ECJ is made available on GitHub1 along with its
source code, making it an entirely open-source system. ECJ focuses on tree-based
GP, providing a number of different tree representation as well as a plethora of other
features.

gplearn2 offers an implementation of GP in Python with an API inspired by (and
compatible with) the popular scikit-learn3 machine learning framework. gplearn has
the limitation of being restricted to solving symbolic regression problems, and like
ECJ utilises a tree-based representation for evolved programs.

HeuristicLab (Wagner & Affenzeller, 2002) is a tool-kit for heuristic and evolutionary
algorithms that is built on the .NET framework. The software offers a wide range of
implementations of various different algorithms (not just Genetic Programming), but
it is set apart in that it has a GUI designed to allow rapid prototyping of the various
algorithms when applied to different problems. HeuristicLab does not offer LGP as
one if its available algorithms, but it does provide information on how to model a
system that is flexible in terms of the algorithm it uses to achieve its particular task.

Evoasm4 is an open-source GP system that performs Automatic Induction of
Machine code by Genetic Programming (AIMGP), a variant of linear GP which

1https://github.com/eclab/ecj
2https://github.com/trevorstephens/gplearn
3http://scikit-learn.org/stable/
4https://github.com/evoasm/evoasm/
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represents and manipulates individuals as binary machine code. While AIMGP results
in a significant speed up due to direct execution of the machine code, the dependence
on a specific processor architecture (x86-64 in the case of Evoasm) restricts portability
(Brameier & Banzhaf, 2007). Furthermore, often machine code based systems can be
constrained by hardware limitations (e.g. the number of CPU registers). Evoasm does
provide functionality for intron elimination in evolved programs as LGP offers.

VUWLGP (Fogelberg & Zhang, 2005) is an LGP system developed at the School of
Statistics, Mathematics and Computer Science, Victoria University of Wellington, New
Zealand. While VUWLGP is an open-source implementation of LGP, it was released
before the work of (Brameier & Banzhaf, 2007) which consolidated and improved
upon the previous work in the area of linear GP. As this implementation is guided
by this text, it is expected that there is a considerable amount of difference between
VUWLGP and this implementation. Moreover, the focus of this work is on providing
a modern, cross-platform software package that is readily accessible and available such
that the development process is streamlined.

2.4 LGP Usage

LGP has seen successful usage across a broad range of different domains as the GP
representation of choice. This section (1) details a subset of the recent usages of LGP
to provide further motive for the development of an open-source LGP system, and (2)
highlights a selection of the recent developments to LGP.

2.4.1 Applications

Guven (2009) used LGP and Neural Networks as methods for predicting time series
of river discharge data. River flow processes are generally accepted to be seasonal and
non-linear, meaning the characteristics of stream flow generation are likely to be highly
different during different periods. The models were evaluated using a combination of
the coefficient of determination R2, mean squared error (MSE), and mean absolute
error (MAE). It was found that both techniques predicted the daily time series of
discharge with a high degree of alignment with the observed data. LGP performed
moderately better than the NN approach, however. The results support the use of
LGP as a tool for predicting non-linear and dynamic river flow parameters.

Remaining in the context of modelling hydrological phenomena, Danandeh Mehr,
Kahya, & Yerdelen (2014) investigated the use of LGP in predicting successive-station
monthly stream-flow data. Artificial Neural Networks (ANN) have shown promising
results in other applications in hydrology, but are often criticized as black boxes which
are difficult to interpret. Danandeh Mehr et al. (2014) found that while ANNs
and LGP both demonstrate an ability to handle the successive-station stream-flow
process in general, the LGP model was superior in all of the scenarios examined.
Furthermore, the LGP function set specified only the basic arithmetic operators
(+,−,×,÷), meaning that the genetic programs can be represented by mathematical
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equations which are preferential to ANNs due to their practical use and ability to be
used as tools to identify knowledge from the training data.

The work of Ravansalar, Rajaee, & Kisi (2017) combined traditional LGP and a
discrete wavelet transform (DWT) technique to create a hybrid model for monthly
stream flow. DWT can be used to capture multi scale features of a signal by de-
composing time series into several sub-series. These sub-series can be feed as inputs
into the LGP model to predict the stream flow for one month ahead. This hybrid
approach was found to perform better than standalone LGP with a superior ability to
approximate the non-linear relationship between the inputs and outputs.

G. Wilson & Banzhaf (2010) apply LGP to trading on the foreign exchange market in
attempt to evaluate LGP on a previously untested financial market domain. The LGP
individuals were organised such that the output register stored the value corresponding
to a trade recommendation. Here, a value of 0 in the output register indicated no
trade is conducted. A value in the range ±[0, 1] is multiplied by the maximum dollar
amount to be bought or sold per trade. The LGP function set consisted of standard
mathematical and logical operators, in addition to traditional analysis metrics such
as moving average, momentum, and channel breakout. It was found that the results
gathered (and the overall final profits) were competitive with similar studies using
other GP techniques, with 85% to 100% of buys being profitable.

Troiano, Birtolo, & Armenise (2016) build on recent investigation of a generative
approach based on evolutionary algorithms in order to assist in the design of user
interfaces. LGP is considered as a technique for optimizing the layout of a GUI menu
system. Experimental results showed the ability of LGP to converge towards high
fitness solutions, with solutions being comparable to those designed by humans. This
outcome encourages the usage of LGP in such a context in order to aid designers in
the process of designing menu systems, reducing human fatigue.

LGP has seen applications in traditional engineering contexts such as the work
of Gandomi, Mohammadzadeh S., Pérez-Ordóñez, & Alavi (2014). The study was
novel in its approach to applying LGP to a structural engineering problem to build a
predictive model for the shear strength of RC beams without stirrups. The model
was evaluated based on a multi-objective strategy optimising for model simplicity and
high fitness on training and validation data. The LGP model was found to produce
better outcomes than existing building codes and the resulting equation demonstrated
the ability to capture the underlying physical behaviour. Furthermore, the simplicity
of the model makes the integration into practical uses more straight-forward.

2.4.2 Developments

The recent development of so called soft memory (McPhee & Poli, 2008) for LGP
involves altering assignment to a register such that it does not completely overwrite
the value. Instead, the old and new values are combined using a weighted average:

vcombined = γvnew + (1− γ)vold
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Here, vcombined is the final value stored in the register, vnew is the newly computed
value and vold is the original value in the register. γ is a constant that determines
the amount of influence the previous value has on the new value; γ = 1.0 means
that the old value does not affect the new value and the operation will be a hard
assignment of the new value. Extensive empirical testing found that a soft memory
approach performed comparatively to a hard memory implementation in some cases,
while in certain instances a soft memory system had significant benefits, suggesting
that further development of such a system may be worthwhile. The authors state
that further work could refine the exact assignment implementation, with a moving
average approach being proposed.

Sotto, Melo, & Basgalupp (2016) propose an improved version of LGP (labelled
λ-LGP) which is based on an LGP implementation with only effective micro/macro-
mutations. This base is supplemented by additional techniques for determining how
individuals are chosen for reproduction. A number (λ) of mutations are applied to each
individual in an attempt to encourage exploration of neighbouring zones in the fitness
landscape. A set of different criteria determine whether a mutated individual will
replace its parent. The implementation was evaluated on the Ant Trail problem where
λ-LGP outperformed not only traditional LGP, but other state-of-the-art methods.

Hu, Payne, Banzhaf, & Moore (2011) discuss how the distribution of neutrality
within programs affects the relationship between robustness and evolvability in LGP,
particularly with respect to mutation-based search. Further to this, Hu, Banzhaf, &
Moore (2013) show how the effects of recombination accelerate the evolution process
and promote robust programs. It is proven that a combination of recombination
and mutation operators is able to accelerate the evolutionary search process, with
noticeable acceleration when the population is initialized from a robust phenotype.

Watchareeruetai, Takeuchi, Matsumoto, Kudo, & Ohnishi (2011) propose a tech-
nique for the identification and elimination of structural redundancies within a linear
representation. This technique allows for the identification of genotypes (represen-
tations) which map to the same phenotype (program), as this is not a one-to-one
relationship. The existence of such redundancies in a population increase the search
space, which on one hand is argued to be a positive (as a means to escape local
optima). On the other hand, Watchareeruetai et al. (2011) argue that the execution
of such redundant programs should be avoided. It is shown that the avoidance of
redundancy can improve the performance of LGP, as it encourages the exploration of
the search space, at the phenotype level as opposed to the genotype level.
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3 Approach

This implementation follows the fundamental representation and algorithms of LGP
as outlined by Brameier & Banzhaf (2007). The system is designed in such a way that
encourages modularity, similar to a package-based architecture which provides greater
diversity and flexibility (Bouckaert et al., 2010).

The following sections detail the scope of the system, design and implementation
details, and rationale for the various decisions made.

3.1 Design and Implementation

3.1.1 Principles

The feature set of the system is primarily focussed on the concepts outlined in the
second chapter of the standard LGP reference (Brameier & Banzhaf, 2007) which
details program representation, execution and evolution. The specific concepts are
detailed here with regards to how they fit within the context of this system.

Program Representation
The program representation used in this implementation mainly follows that outlined
by Brameier & Banzhaf (2007), with the addition of generic registers. Traditionally,
LGP programs operate on a set of registers which contain floating-point values and
the operations used must be appropriate for that data type. This system takes a more
liberal approach, leaving the register data type generic with the goal of presenting a
higher degree of flexibility to the user.

The implication of this is that the user will need to define custom operations to
account for the data type of the registers. This is the intended outcome as it allows
for greater scope in terms of what the genetic programs are able to accomplish. The
system provides default implementations of the core components to be compatible
with the traditional case of floating-point registers, but the flexibility exists to use
any data type that a problem may need.

Program Execution
Program execution is achieved through a simple virtual machine built into the LGP
system, that is able to understand and execute the instructions belonging to an evolved
program. However, the organisation of the system allows for custom execution models
to be defined where required.

The incorporation of algorithms for the elimination of non-effective code (Brameier
& Banzhaf, 2007) ensures that the system has optimal performance and takes advantage
of the linear representation.

17



Program Evolution
In addition to the traditional LGP approach, the system is supplemented with different
models for evolution. The traditional LGP algorithm is available in addition to two
parallelised algorithms described by Alba, Luque, & Nesmachnow (2013). The first
parallelised algorithm utilises a master-slave parallel model where the computationally
expensive portions of the EA are offloaded onto a set of threads, to be performed in
parallel for increased performance characteristics.

The second model, distributed island migration, describes an algorithm that has a
number of distinct populations which solutions can migrate between. Each population
is evolved in parallel and the gene pool of the populations is distributed amongst the
islands. This allows for greater diversity as exploration occurs between populations
and exploitation occurs within populations.

Figure 5: The two parallel models given as additions in the system. The master-slave
model is given on the left, where slaves perform the computationally expensive tasks of
fitness evaluation and even genetic operator application (for large populations). The
right hand side model, island migration, shows distinct populations which solutions
can migrate between to encourage diversity between the populations.

As well as these core concepts, a set of key design principles guides the direction of
implementation with regards to design decisions:

Cross-platform
The system is able to be used on the major operating systems (MacOS, Windows,
Linux) to allow for straight-forward integration into existing environments. Being a
cross-platform system also widens the scope of potential users.

Extensible
A well-defined public API enables the system to be extended where necessary in order
to adapt to a particular problem domain. The API grants access to creating a range
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of custom modules, permitting customization of the following elements:

• Instruction set.
• Fitness function.
• Search operators (selection, recombination, mutation).
• Evolutionary algorithm.
• Program/instruction representations.

The design of a modular system is of great importance for this implementation. To
ensure that the system’s extensibility can be used to its fullest, extensive documentation
is made available with the system. This includes documentation of the design and
architecture, instructions for adapting the system to a new problem (e.g. defining new
instructions). This core documentation is supplemented by well documented source
code allowing for one to familiarise themselves with the code quickly.

Efficient and Modern
Modern language features are taken advantage of to provide a system that is efficient
in terms of memory management and runtime (through parallelism). The system is
built upon Kotlin, a modern programming language that is built on the Java Virtual
Machine providing:

• Cross-platform support.
• Full access to the Java standard library in conjunction with an idiomatic standard

library.
• Full Java interoperability.
• Support for modern functional interfaces and null-safety.
• Reified generics providing safer type-casting behaviour (important for a modular

system).

3.1.2 System Architecture

Figure 6 provides a high-level overview of the different components which comprise
the system and how they interact. Each of the components is detailed in the following
sections as well as how they are used to perform the various LGP algorithms.

This section does not provide a usage guide for the software, as that role is fulfilled
by the on-line documentation (http://lgp.readthedocs.io/en/latest/). Regardless,
to supplement the concepts explained here, example code for setting up a problem
within LGP system is given in Appendix A. This particular code sets up the Keijzer-6
benchmark as described in Section 4.1.1.
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Figure 6: High-level overview of the system design.

Problem
At a high-level, a problem in the LGP system is essentially a wrapper that encapsulates
the various details of a problem and the components that can be used to find solutions
to it. Namely, a problem is comprised of data attributes (e.g. name, description of the
problem, training/test datasets) and a collection of dependencies that can be used to
initialise the system in order to find solutions for that particular problem.

There are three essential dependencies that must be resolved in order to build a
problem: An environment in which the problem is defined, an evolutionary algorithm
that is used to guide the search process, and a dataset that provides information for
tailoring the genetic programs to the particular problem being targeted. Each of these
is explained in the subsequent sections.

In terms of implementation, a problem is an abstract class with the structure
given by Figure 7. The order in which the methods are called is important, as the
environment must be initialised before the model, both of which must be initialised
before the problem can be solved. As the class is abstract, it is up to the user defining
the problem to provide a concrete implementation, leaving the problem definition wide
open. This freedom is given as it is likely that each problem will have a wide range of
requirements and possible configuration details that the user may which to tune.

initialiseEnvironment() gathers any dependencies that are required by the
environment in order to perform the processes of LGP. The particular dependencies
required are documented in the next section. As the parameters of the environment
can vary dramatically, they are particularly influential on the result of the search
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and the consolidation of these parameters in one central location encourages rapid
experimentation.

initialiseModel() performs the tasks necessary to configure the evolutionary
algorithm provided. As the particular implementation of the algorithm is given to
the user, this may include custom set up logic as the user needs (e.g. initialising an
external simulation system for evaluating the genetic program solutions).

Lastly, the solve() method begins the evolutionary search process. It is essential
that the environment and evolutionary algorithm be initialised before a problem can
be solved, as they provide the information needed to perform the search. The user
can also define the shape of their solutions, depending on the information they want
to be given at the completion of the process.

Figure 7: Problem class diagram. The class definition is abstract and it is expected
that a concrete implementation be given that defines the particular problem to be
solved.

Environment
As mentioned previously, the environment is an important piece of the puzzle when
defining a problem to be solved using this system. The environment acts as a central
repository for core components of the LGP system. It can be thought of as the context
in which the LGP system is being used, as the environment used will directly influence
the results.

The components needed to build an environment are split into three main categories:
Construction, Initialisation, and Registered. These components and their order are
described in the following sections.

Construction Components
Construction components are those that are required when building an environment

instance and are passed to the class constructor (hence construction components).
These components provide the base information necessary for resolving further compo-
nents. The set of components that fall under the construction label are: Component
Loaders, Default Value Provider, Fitness Function.

Like most parts of the system, Component Loaders are a module that provide the
ability to load components. They are not strictly a component themselves, but they
represent a promise to load a component when instructed to through the interface
given by Figure 8.
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Figure 8: A ComponentLoader provides a simple interface that is a promise to load
a component when requested.

An environment requires three component loaders: ConfigLoader, ConstantLoader,
and OperationLoader.

The ConfigLoader is as the name suggests, responsible for loading configuration
information (a component in the system). A configuration loader does not in any way
restrict the process with which configuration is loaded, it simply defines an interface
that promises to provide configuration in the appropriate form when requested. This
open interface means that configuration could be loaded from a file stored on a
machine’s local hard disk, a database, or over a network connection — the environment
is deliberately oblivious to the details of the implementation.

A ConstantLoader works in a similar fashion to the ConfigLoader. It provides
constant values when requested, which can be used by LGP programs. The particular
method used is not important, as constants may be provided in various ways: they
could be hard-coded values or they could be randomly generated.

An OperationLoader provides the operations (functions) that the system is able
to make use of when evolving programs. Operations in this system are modular
components, allowing for the possibility of the definition of custom operations for the
particular problem being solved. In some cases, the built-in operations will be suited
to the problem and the default operation loader provided can be used. In cases where
custom operations are used however, there may be some custom logic required to load
the operations appropriately.

The implementation provides a set of default component loaders for the common
scenarios.

The Default Value Provider represents a generator which can produce the values
that are used to populate the calculation registers of the register set. Generally, the
built in constant value provider will be used so that all calculation registers have
the same initial value, but flexibility is built into the API to allow for custom logic
(e.g. random calculation register values).

The Fitness Function is a crucial component for the LGP system as it is the
metric used to determine which solutions are better than others, in order to guide
the evolutionary search. In this system, a fitness function has a simple definition:
it is a function which takes a list of predicted target values and a list of expected
target values and returns a simple floating-point measure that determines how well
the predictions fit the target values.
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Initialisation Components
Initialisation components operate at a level below construction components and

are somewhat concealed from the user. They are automatically loaded by an envi-
ronment when a set of suitable construction components have been given. Generally,
an initialisation component will be some component that has been loaded from a
component loader and acts as a kind of global state that isn’t affected by the LGP
system (e.g. configuration information loaded from a ConfigLoader).

The most important initialisation component is the register set which is created
during the initialisation of the environment. The configuration information given when
constructing the environment will detail the number of input registers and the number
of calculation registers, while the ConstantLoader will provide a set of constants.
This allows for the register set to be initialised with the correct initial values and
stored as part of the environment, where it is kept as a global reference register set.
Each time a program individual is created it receives a new copy of this reference
register set.

Registered Components
Registered components are those which the system regards as modular. The system

is built upon the concept of modules which describe self-contained components that are
used to fulfil certain roles within the system (e.g. search operators, program generation
schemes). A modular design allows for the system to be malleable to different problems
as custom functionality is easily defined.

The rationale behind this design is to allow for a high degree of flexibility regarding
the particular arrangement and configuration of the various components made available
to the system. Furthermore, users can implement their own modules and register their
custom behaviour as necessary.

A registered component requires a reference to the environment in which it operates
as it may be useful for a custom component to make use of information that is stored
within the environment (e.g. configuration details, the register set).

Registering a component involves associating a module type (i.e. the type of the
component) with a particular instance of the module. There is no restriction on the
type of components allowed, meaning that the system is open and custom functionality
can be inserted where necessary (a plug-in approach). The environment stores a
mapping of module type to the implementation of that module and allows access to
that implementation from within the system.

Modules
The hierarchy that the system uses to organise its modules is illustrated by Figure 9.
These modules are situated at the core of the system and provide the means for
performing LGP. An overview of the modules that comprise this hierarchy and their
implementation details is provided here.
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Figure 9: Hierarchy of the modules that comprise the core of this LGP system.

Evolutionary Algorithm
In this system, the evolutionary algorithm (represented by the EvolutionModel

class) is an abstract concept used to describe the core evolution process. In its most
basic form, the EA provides a way for itself to be trained on a data set and tested on
a data set. Each of these operations will produce a result that describes the state of
the model.

Training an EA performs the process of evolution to build a population of solutions
and find a best solution. Testing the EA generally involves using the best solution to
form an evaluation for an unknown set of data (i.e. not the data used for training). In
this case, the EvolutionModel is being used as a predictor.

Brameier & Banzhaf (2007) describe a simple Steady-State EA (as detailed in
Section 2.2.3) that forms the basis of their LGP system. A modified version of this
algorithm that does not perform validation steps is implemented in the system as
an EvolutionModel that can be used to perform LGP with. In addition to this, the
system is left open to the possibility of alternative EAs that may make sense for
particular problems.
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Figure 10: EvolutionModel class diagram

Program Generator
The system represents genetic programs with the Program class (see Figure 11). A

program in the LGP system is defined as a module meaning that the exact details of
how the program operates is left up to the user of the system. This open interface is
different from other systems which often impose their own structure and logic on the
representation of programs.

Figure 11: Program class diagram

Despite the fairly unrestricted interface of the program modules, LGP describes a
particular form of program representation which this system adhere to. The invariants
are that a program is comprised of a sequence of instructions and has a set of registers
made available to it. The program interface also exposes a method to allow for its
effective program to be found.

Similarly, the instructions that a program is comprised of are also modules to the
system, meaning that the exact effect of an instruction can be left up to the user. In a
typical LGP system, instructions would represent pure mathematical functions which
don’t introduce side-effects (Brameier & Banzhaf, 2007), however the system allows
for the ability for instructions to perform any operation they need — provided that
the instruction receives its inputs through a set of registers.

The rationale behind designing the system in this way as opposed to restricting
the program/instruction representation is to allow further flexibility with regards
to applying LGP to problems that don’t necessarily have a strict mathematical
representation (e.g. control problems). In such a context, instructions might be
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commands such as move left or rotate 90° and inputs would come from the environment
within which those actions occur.

Program generation is facilitated by the ProgramGenerator class. Again, in the
name of flexibility, this is a modular component as the generation scheme for initial
programs may vary (Brameier & Banzhaf (2007) acknowledge random, effective,
maximum-length, constant-length, and variable-length initialization techniques). The
program generator is expected to act as a stream of programs so that other components
in the system can continuously generate new programs.

Instruction Generator
An instruction is represented by the modular Instruction class which itself is

built upon the Operation module. An InstructionGenerator must be defined to
create instructions that are valid (or the default implementation can be used). An
operation in this system represents the combination of a function (e.g. +) and an
arity (i.e. the number of arguments the function expects). A function encapsulates
the behaviour of a transition from an argument or set of arguments to an output
value (e.g. Function<T> = (Arguments<T>) -> T where T refers to the type of the
registers). The operation level also defines the representation of the function, allowing
for custom translation behaviour when instructions are exported (e.g. instead of the
C programming language, the system may wish to target the JVM).

The Unary and Binary operation classes are provided as default operation types
that expect 1 or 2 arguments respectively. As the majority of operations used by the
LGP system will fit under these two operation types, it is beneficial for them to be
included as defaults.

Figure 12: Instruction and Operation class diagrams

Selection Operator
As stated in Section 2.2.3, LGP as described by Brameier & Banzhaf (2007)

traditionally uses tournament selection as the means of deciding the individuals which
will be exposed to the effects of the variation operators. While the system implements
tournament selection, the interface is also left open so that other selection algorithms
(e.g. fitness proportionate selection or reward-based selection) can be implemented
and utilised as part of the evolutionary algorithm. The selection operator interface is
provided by the SelectionOperator abstract class and is given in Figure 13.
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Figure 13: SelectionOperator class diagram

Recombination Operator
The traditional EA given in Section 2.2.3 performs two-point linear crossover (see

Figure 3). While this method is generally used, Brameier & Banzhaf (2007) do detail
various other recombination operators for linear programs (e.g. one-point crossover,
one-segment recombination). The system implements two-point linear crossover as
described by Brameier & Banzhaf (2007) but any recombination operator could be
used by the system if implemented using the interface given in Figure 14. The API
for two-point linear crossover as it is implemented is also included to illustrate how
the base interface can be extended to provide further functionality (e.g. the addition
of algorithm parameters). It should be noted that the implementation performs the
recombination in place, so that the individuals are directly modified.

Figure 14: RecombinationOperator class diagram

Micro/Macro Mutation Operators
In its basic form, a mutation operator has the simple interface given by

Figure 15. However, the API provides two implementations of this interface:
MicroMutationOperator and MacroMutationOperator. These implement the
effective micro and macro mutation algorithms as given below. Where external
parameters are needed (e.g. maximum/minimum program length, rate of constants),
the environment facilitates access so that the algorithms can gather the information
needed. The micro mutation operator also takes a custom constant mutation function
as a parameter, which accounts for the case where registers don’t contain simple
floating-point values.

As with the other modular components of the system, a user has the ability to
build their own mutation operators as is required.
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Effective Macro Mutation
Parameters: insertion rate pins; deletion rate pdel; maximum program length lmax;

minimum program length lmin.

1. Randomly select macro mutation type insertion | deletion for probability pins |
pdel and pins + pdel = 1.

2. Randomly select an instruction at a program position i (mutation point).
3. If l(gp) < lmax and (insertion or l(gp) = lmin) then:

(a) Insert a random instruction at position i.
(b) If effective mutation then:

i. If instruction i is a branch go to the next non-branch instruction at a
position i := i+ k (k > 0).

ii. Run non-effective code elimination until program position i.
iii. Randomly select an effective destination register rdest(i) ∈ Reff .

4. If l(gp) > lmin and (deletion or l(gp) = lmax) then:

(a) If effective mutation then select an effective instruction i if existent.
(b) Delete instruction i.

Effective Micro Mutation
Parameters: mutation rates for registers pregmut, operators popermut, and constants

pconstmut; rate of instructions with constant pconst; mutation step size for constants
dconst.

1. Randomly select an effective instruction.
2. Randomly select mutation type register | operator | constant for probability
pregmut | popermut | pconstmut and pregmut + popermut + pconstmut = 1.

3. If register mutation then:

(a) Randomly select a register position destination | operand.
(b) If destination register then select a different effective destination register

the non-effective code elimination algorithm.
(c) If operand register then select a different constant | register for probability

pconst | 1− pconst.

4. If operator mutation then select a different instruction operator randomly.
5. If constant mutation then:

(a) Randomly select an effective instruction with a constant c.
(b) Change constant c through a standard deviation dconst from the current

value: c := c+N (0, dconst).
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Figure 15: MutationOperator and implementations class diagrams

Extensions
When describing the environment component of this system, it was mentioned that

modules are registered by mapping a module type to a particular implementation of
module. The modules that have been included in the core API of the system have
been detailed, but the way in which the system is designed allows for the registration
of any type of module.

This leaves the system open for future developments to LGP and GP in general, as
the system can be easily extended to make use of novel search operators or evolutionary
algorithms. Alternatively, a simpler module could be included to perform tasks such
as logging of the evolutionary process or real-time aggregation of the results.

4 Evaluation

To evaluate the system, a set of standard benchmark problems were implemented
within the confines of the system. The benchmarks (which are detailed in the
subsequent sections) include a combination of synthetic and real-world symbolic
regression problems. Varying configurations will be used to show the effects different
parameters have on the results of the system. These benchmarks intend to test the
system’s capabilities and gather insight about the influence of different configurations
on the system’s performance.

As a secondary stage of evaluation, the best performing configurations are utilised
to test the abilities of the different parallelised evolutionary algorithms implemented as
described in Section 3.1. Here, the techniques are compared based on measurements of
three statistics created by the evolutionary process: fitness, runtime, and population
diversity.

Finally, a comparison of LGP with results gathered from the execution of a tree-
based genetic programming solution and a linear regression model on a subset of the
benchmarks is made. These demonstrate problems in which a linear representation
has an advantage as well as highlighting comparable performance between techniques.

The following sections detail the benchmark problems, as well as outlining the
experimental methods and configurations.
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4.1 Benchmarks

4.1.1 Synthetic Symbolic Regression

White et al. (2013) propose a set of benchmark problems for evaluating GP systems.
These problems are chosen to address issues identified with typical GP benchmarks,
such as the relative ease with which they can be solved. This subsection outlines the
symbolic regression problems taken from White et al. (2013).

Keijzer-6
The Keijzer-6 problem is derived from Keijzer (2003) where a training and test

range are proposed. The problem requires extrapolation, not just interpolation (White
et al., 2013) due to the usage of the sum operation. In comparison to the other
benchmark problems, it is relatively simple due to its low dimensionality.

f1(x) =
x∑

i=1

1
i

(2)

Korns-12
Korns-12 remains unsolved in Korns (2011). The problem is interesting in that

the dataset contains 5 input variables, but only 2 have an affect on the output of the
function. The problem focuses on testing the system’s ability to determine unimportant
input variables and avoid their use in approximating the function.

f2(x0, x1, x2, x3, x4) = 2.0− (2.1× (cos(9.8× x0)× sin(1.3× x4))) (3)

Vladislavleva-4
This problem originates from Vladislavleva et al. (2009) and is described by the

authors as their “favourite problem”. The problem is dubbed UBall5D5 (see Figure 16
for an illustration) and the original authors state their GP system has difficulty finding
the simple and harmonious input–output relationship. Like the Keijzer-6 problem,
Vladislavleva-4 requires extrapolation.

f3(x0, x1, x2, x3, x4) = 10
5 + ∑5

i=1(xi − 3)2 (4)

Nguyen-7
The other benchmark problems primarily consist of relatively basic arithmetic and

trigonometric operations. Nguyen-7 (Uy, Hoai, O’Neill, McKay, & Galván-López,
2011) is a logarithmic function and thus requires a different operation set from the

5Five-dimensional unwrapped ball.
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other problems. Like the Keijzer-6 problem, Nguyen-7 has a lower dimensionality
than the other problems.

f4(x) = ln(x+ 1) + ln(x2 + 1) (5)

Pagie-1
Pagie & Hogeweg (1997) define the Pagie-1 as a simple 2-D numerical function which

can be scaled in terms of difficulty by introducing more variables. It has a reputation
for difficulty using standard GP. Harper (2012) state that across all the literature,
standard GP failed to solve the problem and in their own paper, approximately 12%
of the runs were successful. The reason for such difficulty is that the GP population
becomes bloated very quickly, which halts the system’s ability to produce fitness
improvements.

f5(x, y) = 1
1 + x−4 + 1

1 + y−4 (6)

Table 2: A summary of the synthetic symbolic regression benchmarks used to evaluate
the system. In the training and testing sets, U [a, b, c] refers to c uniform random
samples drawn from a to b, inclusive. E[a, b, c] is a grid of points evenly spaced with
an interval of c, from a to b inclusive.

Name Equation
Training Set
Testing Set

Keijzer-6 ∑x
i=1

1
i

E[1, 50, 1]

E[1, 120, 1]

Korns-12 2.0− (2.1× (cos(9.8× x0)× sin(1.3× x4))) U [−50, 50, 10, 000]

U [−50, 50, 10, 000]

Vladislavleva-4 10
5+

∑5
i=1(xi−3)2 U [0.05, 6.05, 1, 024]

U [−0.25, 6.35, 5, 000]

Nguyen-7 ln(x+ 1) + ln(x2 + 1) U [0, 2, 20]

U [0, 2, 100]

Pagie-1 1
1+x−4 + 1

1+y−4 E[−5, 5, 0.4]

U [−5, 5, 1000]
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Figure 16: Illustrations of the synthetic symbolic regression problems. The higher
dimensional problems have been represented as projections onto 2-D intervals. The
Pagie-1 problem is represented as a contour plot of the 3 dimensions; Korns-12 is
plotted using the 2 dimensions that the function actually utilises; Vladislavleva-4 is
shown with respect to x0 and x1, with x2 = x3 = x4 = 0.

4.1.2 Real-world Regression

In combination with the synthetic symbolic regression problems, three real-world
symbolic regression problems are employed to demonstrate the system’s performance
in a more practical setting. These problems are chosen for their varying degrees of
difficulty and linearity.

Wine Quality Data Set
The first problem involves modelling wine quality based on physico-chemical tests

(Cortez, Cerdeira, Almeida, Matos, & Reis, 2009). There are two datasets relevant
to red and white variants of the Portuguese “Vinho Verde” wine, each comprised
of twelve features; the first eleven features are real-valued input variables based on
physico-chemical tests. The twelfth feature, wine quality, is the output variable and is
based on sensory data, scored between 0 and 10.

Parkinson’s Data Set
The second problem, from Tsanas, Little, McSharry, & Ramig (2010) requires

predicting a clinician’s Parkinson’s disease symptom score on the UPDRS scale from
a set of 16 voice measure inputs. The dataset consists of a range of biomedical voice
measurements from 42 people with early-stage Parkinson’s disease recruited to a
six-month trial of a tele-monitoring device for remote symptom progression monitoring.
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There are two outputs that are targeted, the motor UPDRS and the total UPDRS.
For the purposes of these experiments, only the total UPDRS measure is targeted.

Gene Expression Survival Data Set
The third and final real-world regression problem requires using a set of gene

expression data to predict survival time, as described in Lenz et al. (2008). The
problem displays a high level of dimensionality, consisting of 100 features which
have a highly non-linear relationship. This problem will only be used during the
comparison to linear regression to measure the performance of LGP with regards to a
high-dimensional, non-linear problem.

4.2 Experiments

Details of the experiments used to evaluate the system are detailed in the following
sections. The first goal is to evaluate the effects of different configurations on the
system. From this, a baseline set of configurations that work well across problems
is investigated alongside configurations which are particularly suited to individual
problems. It is expected that these configurations do not necessarily provide the
absolute best result in terms of fitness, as the goal is to evaluate the different effects
of the various parameters the configurations target. Secondly, a demonstration of the
performance of the parallelised evolutionary algorithms within the context of an LGP
system is given. Finally, a comparison to both tree-based GP and a tradition linear
regression model is made.

4.2.1 Effects of Parameter Combinations

The first round of experiments is designed to determine a combination of parameters
that produces the best results on average across the benchmarks problems, as well as
identify the combinations which perform best on a particular benchmark. From this,
relationships between parameter combinations can be investigated to determine the
cause behind differing performance characteristics.

Parameters specific to LGP that are believed to have the most significant effects
on the results have been chosen, namely: (1) initial and overall program lengths,
(2) number of calculation registers, (3) operation set, and (4) balance of micro and
macro-mutation rates.

Initial and overall program lengths determine the amount of genetic material that
exists within a population and sets a level of diversity. The number of calculation
registers greatly effects the variability within programs, as it dictates the number of
sub-graphs within a program graph. Genetic program expressiveness is controlled
through the operation set provided, by defining the programming language that
programs are built with. Finally, the balance of micro and macro-mutation has an
effect on the amount of exploitation and exploration the system employs.
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Round 1 measures the effects on fitness performance of 81 different combinations
of parameters across the set of benchmark problems. Each benchmark problem is
configured and executed with each of the 81 different parameter combinations. 10
independent runs occur per benchmark, resulting in 810 total runs per benchmark.
Each parameter has 3 settings from which it can draw: a restrictive value, a conservative
value, and a generous value. The exact values for these settings have been separated
into 4 tables (one for each parameter) and are described in the following sections.

Program Length
The system splits the configuration of program length into four separate, but related

parameters: initial minimum program length (Imin), initial maximum program length
(Imax), minimum program length (Omin), and maximum program length (Omax). The
initial minimum and maximum program length parameters determine the length of
programs which are randomly generated at the start of the evolutionary process. The
minimum and maximum program length parameters set a limit on the size of programs
as the evolutionary process is carried out — a programs length will always be within
the minimum and maximum program length settings.

A restrictive setting dictates that initial programs will have between 10 and 20
instructions with an upper bound of 30 instructions during the evolutionary process.
This setting has been chosen as it introduces a limit on the amount of diversity within
a population. A conservative, middle-of-the-road setting is chosen to allow programs
to grow to a relatively complex size whilst allowing for initial programs that have
a significant amount of genetic material. Lastly, the generous setting is designed
to provide a large amount of genetic material and encourage complicated programs.
While this generally proves useful, there are cases where too longer programs can
cause the trajectory of the evolutionary process to follow a narrow path where it can
not escape to reach better solutions.

Table 3: Values for the initial and overall program lengths. The values refer to the
number of overall instructions in a program. When generating an initial program, its
length will be chosen randomly from the range given by (Imin, Imax).

Initial (Imin, Imax) Overall (Omin, Omax)

Restrictive (10, 20) (10, 30)

Conservative (30, 60) (30, 100)

Generous (50, 100) (50, 200)

Calculation Registers
The number of calculation registers is important in LGP as it can determine the

amount of variability with regards to sub-graphs in programs. A restrictive value
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limits the number of sub-graphs and encourages overwriting of the input registers. On
the other side of the spectrum, too many calculation registers can support independent
calculations which do not make use of previously calculated values. The conservative
value attempts to provide a balance between the two extremes.

Table 4: Values for the number of calculation registers made available to programs
in the LGP system.

# Calculation Registers

Restrictive 2

Conservative 6

Generous 10

Operation Set
In LGP, the operation set defines the programming language of the genetic programs.

A restrictive operation set limits the ability of the programs to model complex functions
whereas a generous operation set can dramatically increase the size of the search
space, making it more difficult to discover the optimum solution. As the benchmarks
all involve mathematical modelling in the form of symbolic regression, the operation
sets consist of varying degrees of arithmetic, trigonometric, power and logarithmic
functions. The most generous operation set also allows for conditional expressions to
be utilised.

Table 5: Values for configuring the operation set available to programs in the system.

Operation Set

Restrictive +,−,×,÷

Conservative +,−,×,÷, sin, xy, sqrt, ln

Generous +,−,×,÷, sin, xy, sqrt, ln, x2, if >, if ≤

Micro/Macro Mutation Rates
The system allows the mutation rate to be configured in terms of the balance

between micro and macro mutations. A high level of macro mutation encourages
exploration of the solution space as opposed to a high level of micro mutation which
promotes exploitation of initial solutions. The type of these parameters is described as
restrictive, conservative, and generous as with the other parameter combinations, but
it may be more accurate to describe them in terms of how they navigate the search
space — exploration (restrictive), exploitation (generous), or a balance (conservative).
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Table 6: Values for micro and macro mutation rates in the system.

Micro Mutation Rate Macro Mutation Rate

Exploration 25% 75%

Balanced 50% 50%

Exploitation 75% 25%

Other Parameters
To ensure the effects of the various combinations are able to be analysed consistently,

the other parameters that the system offers will remain constant throughout the series
of experiments. The parameters have been chosen to be relatively conservative based
on experiments outlined by Brameier & Banzhaf (2007).

Table 7: General parameters that remain constant in the system. A relatively
balanced set of parameters are chosen to ensure consistency as the aforementioned
parameter combinations are tested.

Parameter Value

Population Size 500

Generations 500

Constant Rate 50%

Constants {−1, 0, 1}

Number of Offspring 2

Tournament Size 4

Crossover Rate 50%

Recombination Operator Linear Crossover

Maximum Segment Length 6

Maximum Crossover Distance 5

Maximum Segment Length Difference 3

Macro Mutation Operator Effective Macro Mutation

Insertion Rate 50%

Deletion Rate 50%

Micro Mutation Operator Effective Micro Mutation
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Register Mutation Rate 33.3%

Operator Mutation Rate 33.3%

Constant Mutation Rate 33.3%

Constant Mutation Function Random Gaussian Noise

As the benchmarks come from a wide variety of sources, they do not all use the
same fitness function. The particular objective function targeted is sourced from the
original literature in which the problem is described and are repeated below.

Table 8: Fitness functions used by each individual benchmark.

Benchmark Fitness Function

Keijzer-6 Mean-Squared Error

Korns-12 Mean-Squared Error

Nguyen-7 Mean-Squared Error

Pagie-1 Mean-Absolute Error

Vladislavleva-4 Mean-Squared Error

Red Wine Quality Mean-Absolute Error

White Wine Quality Mean-Absolute Error

Parkinsons Total Mean-Absolute Error

Gene Expression Survival Mean-Absolute Error

4.2.2 Evolutionary Algorithm Comparison

In order to draw comparisons between the different evolutionary algorithms the system
offers, combinations identified from the first round of experiments are used to collect
a set of statistics from the EAs. These will capture the advantages and disadvantages
of each EA from the point-of-view of the benchmark problems.

Three evolutionary algorithms are provided by the system — the traditional steady-
state LGP EA (Brameier & Banzhaf, 2007), as well as two parallelised algorithms:
master-slave and island migration (Alba et al., 2013). To compare these techniques,
three measures are utilised: (1) fitness of the best solution found, (2) runtime of the
evolutionary process, and (3) diversity within the population over the course of the
EA. Subsequent sections detail the applied measurement methods further.

Each benchmark is run 30 times using each EA to measure the statistics listed above.
Additional settings required for the island-migration EA are specified in Table 9.
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The best parameter combinations established for each benchmark in Round 1 will
be used to configure the system, with all other parameters remaining unchanged from
those specified for first round of experiments (see Table 7).

Fitness
Fitness is measured by the typically employed method — application of a genetic

program solution to a set of input-output examples where the error is measured by an
objective function. The particular fitness functions used by the benchmark problems
are given below, where Y is a vector of n expected outputs and Ŷ is a vector of
predicted outputs:

MSE = 1
n

n∑
i=1

(Ŷi − Yi)2 (7)

MAE = 1
n

n∑
i=1
|Ŷi − Yi| (8)

Runtime
Runtime is measured in milliseconds from the start of the evolutionary process

until the termination. A measurement in milliseconds is used to provide a fine-grained
level of precision.

Diversity
Brameier & Banzhaf (2007) outline a technique for measuring the distance between

two linear genetic programs using string edit distance. This process involves represent-
ing the program’s effective code as a string of operations (e.g. (-, +, /, +, *, -)). The
edit distance between two programs operation sequence can be computed using an
edit distance algorithm (in this case, Levenshtein distance) to determine the structural
difference between the effective parts of the programs. A difference in effective code is
more likely to be directly related to a difference in program behaviour.

To measure diversity within an EAs population, a random sample of 500 pairs of
programs are chosen every 50 generations to have their edit distance computed and
aggregated. This aggregation can be used to determine the average level of diversity
over the course of the EA.

Table 9: Parameters for the island migration evolutionary algorithm.

Parameter Value

Number of Islands 6

Migration Interval Every 100 Generations

Migration Size 5 Individuals
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4.2.3 Comparison to TGP and Linear Regression

As a final method of evaluation, a subset of the benchmark problems are tested against
a tree-based GP (TGP) system (gplearn) and a Linear Regression model (Weka).
The synthetic problems are compared using the tree-based system, while the linear
regression model is used to draw comparisons for the real-world problems. The raw
fitness performance is collected and compared to the results from the LGP system
to quantify the comparability between the two techniques. Furthermore, the average
program length from both LGP and TGP will be collected and compared.

Tables 10 and 11 detail the parameters used in the comparison of the LGP and
TGP systems. The parameters are intended to be fair between the two systems, and
are not optimised for any individual benchmark problem. Both systems are configured
to have the same population size, number of generations, constant values and function
set. Although the individual mutation operators differ, both systems are configured
with a bias towards less destructive mutations; this is displayed by a favouring of
micro-mutations for LGP and a disfavouring of sub-tree mutations for TGP.

Table 12 lists the parameters used to configure LGP when compared
against the linear regression model. Linear regression is performed using the
weka.classifiers.functions.LinearRegression classifier from Weka (M. Hall et
al., 2009). The linear regression model offers little in the way of configuration, so the
default built-in configuration was used. Parameters used to configure the LGP system
are relatively conservative and aim to be benchmark agnostic.

The rationale behind different parameters in each comparison is that the synthetic
regression problems require slightly less extreme parameters than the real-world
problems.

Table 10: Configuration of the LGP system for the comparison of LGP and TGP.

Parameter Value

Initial Min. Program Length 30

Initial Max. Program Length 60

Min. Program Length 30

Max. Program Length 200

Constants {−1, 0, 1}

Constant Rate 40%

# Calculation Registers 8

Population Size 500

Generations 100

Micro-Mutation Rate 75%
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Macro-Mutation Rate 25%

Number of Offspring 4

Tournament Size 4

Crossover Rate 50%

Macro-Mutation Insertion Rate 50%

Macro-Mutation Deletion Rate 50%

Register Mutation Rate 33.3%

Operation Mutation Rate 33.3%

Constant Mutation Rate 33.3%

Operation Set {+,−,×,÷, sin,√,ln, 1
x
}

Table 11: Configuration of the TGP system for the comparison of LGP and TGP.

Parameter Value

Initial Tree Depth 7 – 14

Initialisation Method Ramped Half and Half

Constants {−1, 0, 1}

Constant Terminals 40%

Population Size 500

Generations 100

Tournament Size 4

Crossover Rate 50%

Sub-tree Mutation Rate 25%

Hoist Mutation Rate 37.5%

Point Mutation Rate 37.5%

Function Set {+,−,×,÷, sin,√,ln, 1
x
}
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Table 12: Configuration of the LGP system for the comparison of LGP and Linear
Regression.

Parameter Value

Initial Min. Program
Length

30

Initial Max. Program
Length

100

Min. Program Length 50

Max. Program Length 200

Constants [0− 9]

Constant Rate 40%

# Calculation Registers 8

Population Size 1000

Generations 500

Micro-Mutation Rate 65%

Macro-Mutation Rate 35%

Number of Offspring 6

Tournament Size 6

Crossover Rate 50%

Micro-Mutation Insertion
Rate

50%

Macro-Mutation
Insertion Rate

50%

Register Mutation Rate 33.3%

Operation Mutation Rate 33.3%

Constant Mutation Rate 33.3%

Operation Set {+,−,×,÷, sin, xy,√,ln, 1
x
, if ≤, if >}
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5 Results

5.1 Effects of Parameter Combinations

5.1.1 Overall Best Performing Combinations

Figure 17 depicts the average fitness of the ten combinations which performed best
across all of the benchmarks. The best performing overall combinations are determined
based on their total average fitness. Of these combinations, the combination with the
lowest average fitness was combination 50 which has been highlighted with a dashed
black line. Diamond markers show the combination with minimum average fitness for
each particular benchmark, with the colour of the marker indicating the combination
as described by the legend.
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Figure 17: Illustration of combinations that performed best on average across the
benchmarks. Here, individual lines represent the average fitness of a top-performing
combination on a per-benchmark basis. The top-performing combinations are de-
termined based on their total average fitness. Combination 50 is identified as the
combination that performs best on average across the benchmarks. Markers indicate
the combination with minimum average fitness per benchmark.
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The results for the Keijzer-6 and Nguyen-7 problems interestingly show completely
different characteristics than those of the other problems. A greater amount of variation
in the average fitness between the combinations for these problems is apparent. This
phenomena most likely arises due to the lower complexity of these problems, resulting in
a favouring of more restrictive/conservative combinations of parameters (combination
5 for example). Additionally, over the course of the EA, it appears that the harder
problems all begin to converge on an optimum solution and as a result, the differences
between combinations have less of an effect on performance, in terms of fitness.

A summary of the individual parameter settings for the overall top ten performing
combinations as illustrated above is given in Table 13. Amongst these combinations, it
can be noted that no combination makes use of a restrictive operation set configuration.
The implication is that for the particular benchmark problems tested, the operation
set is vital, and as such an operation set consisting only of simple arithmetic operations
negatively impacts the performance of the system.

Similarly, it appears the problems have a preference towards combinations which
favour exploitation over exploration. Only one of the top performing combinations
utilised a more exploratory search, providing the best result for the Vladislavleva-4
problem. This could be due to the system attempting to avoid the destructive nature
of the macro-mutation operator (as used by an exploratory search).

Table 13: Summary of the parameter settings used by the top-performing combina-
tions across the benchmarks as identified in Figure 17.

Combination Program Length # Calculation Registers Operation Set Micro/Macro Mutation
Rate

4 Restrictive Restrictive Conservative Balanced

5 Restrictive Restrictive Conservative Exploitation

26 Restrictive Generous Generous Exploitation

34 Conservative Restrictive Generous Balanced

50 Conservative Generous Conservative Exploitation

59 Generous Restrictive Conservative Exploitation

62 Generous Restrictive Generous Exploitation

68 Generous Conservative Conservative Exploitation

75 Generous Generous Conservative Exploration

77 Generous Generous Conservative Exploitation

5.1.2 Combination Frequencies

Figures 18 and 19 illustrate the frequency with which a particular combination
occurred in the top and bottom twenty performing combinations, respectively. Any
trends to the combinations that perform best or worst are difficult to interpret in
this visualisation (Section 5.1.3 investigates per-benchmark trends to form a deeper
understanding of these results). Broadly speaking though, it can be gathered that
there is a definite relationship between fitness performance and configuration. Notably,
certain combinations consistently perform satisfactorily or poorly — for example,
combinations 0, 1, 3 frequently occur in the bottom performing set. Conversely,
combinations 5, 26, 77 are regularly present in the top performing group. This
suggests that some preference towards particular combinations is evident.
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Figure 18: Frequencies of combinations in the top twenty results. Combinations
are organised in sequential order, numbered from 0 to 80, with 0 being the most
restrictive and 80 the most generous.
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Figure 19: Frequencies of combinations in the bottom twenty results. The organisa-
tion is the same as for Figure 18.
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5.1.3 Combination Frequency Trends

In this section, the results for each benchmark are investigated individually to comple-
ment the broader, high-level analysis given in Sections 5.1.1 and 5.1.2. Three main
visualisation techniques are used to examine the results: (1) one-dimensional heat
maps to show the relationship between fitness and a particular parameter setting where
appropriate, (2) box-plots to measure the distribution of average fitness with respect
to parameter settings, and (3) scatter plots to illustrate the position of combinations
in terms of the combination space.

Keijzer-6
Figure 20 shows the combinations in sequential order against their average fitness

value. When arranged in a sequential order, the combinations represent a spectrum
where the left-most combinations (starting at 0) are the most restrictive and the
right-most combinations (starting at 80) are the most generous.

Figure 20: Individual combination performance on the Keijzer-6 benchmark. The
colour of the bars is a function of average fitness. A white overlay line highlights the
interaction between the operation set setting and the combination performance.

The problem’s heat map demonstrates a distinct pattern: a sequence of three
poorly performing combinations, followed by six well performing combinations. This
pattern occurs as a direct function of the operation set setting, given on the y-axis.
A reasonably clear relationship is observed — where a restrictive operation set is
used as part of a combination, the average fitness is considerably worse than when a
conservative or generous operation set is applied.
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Figure 21: An illustration of the distribution of average fitness as a function of
combination parameter setting. Each plot focuses on a a particular parameter of the
combinations and highlights the distribution of average fitness for each setting that
parameter takes.

As a secondary assessment, Figure 21 explores the distribution of average fitness
with respect to particular parameter settings for the Keijzer-6 problem. The range
of average fitness with respect to program length, number of calculation registers,
and mutation rates is large with a clear positive skew (see Figure 21a-c). While
this demonstrates relatively good performance with a high concentration of results
around the median, it also illustrates a large amount of variance above the median.
With respect to the operation set however, there is a clear relationship between
fitness and the particular operation set value (e.g. Figure 21d). The conservative and
generous settings produce a lower average fitness, with the entire range being tightly
concentrated around a comparatively low median value, confirming the interpretation
of the pattern observed in Figure 20.

Korns-12
The results for Korns-12 are more difficult to interpret through a 1-D heat map

in contrast to the Keijzer-6 problem, and has been omitted. This is most likely due
to different combinations showing less variation in fitness performance. Figure 22b
shows that a conservative calculation registers setting produces solutions with fitness
below the lower quartile of other settings. Similarly, a generous program length or
operation set promotes the discovery of better solutions (shown in Figure 22a,c).

Figure 23 positions the parameter combinations in terms of their level of restrictive-
ness or generosity, with the size of the points indicating the error level (i.e. smaller is
better). It becomes quite clear that the distribution of well-performing combinations
is fairly evenly spread between the restrictive and generous sides of the spectrum.
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Figure 22: Distribution of average fitness as a function of combination parameter
type. There is a less obvious trend in these results in comparison to the Keijzer-6
problem, which could be a result of the difficulty difference between the two problems.
This implies that difficult problems require more fine-grained tuning of parameters
than is encouraged by the combinations used here.

Figure 23: Illustration of the distribution of the different combinations in combi-
nation space. The combinations are positioned with respect to their distance from
the most restrictive and most generous combinations. The size of individual points is
based on the level of error that combination produced. The top five combinations are
emphasised with a black outline.
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A summary of the individual parameter configurations is provided in Table 14,
for the top five performing combinations (indicated by points with black outlines in
Figure 23). Here, some trends become more obvious.

Combinations 12, 63, 69
Combinations 12 and 63 are located closer to the restrictive portion of the spectrum,

while combination 69 is a relatively conservative setting. These combinations all favour
an exploratory search which may allow them to find more complex solutions and
better performing solutions, despite their restrictions.

Combinations 71, 79
These combinations are situated in the most generous section of the spectrum, and

interestingly utilise a more reserved balanced/exploitative search. This suggests that
initial solutions from these combinations perform quite well and allow the system to
easily hone in on a well-performing solution.

Of these five combinations, combination 71 produced the best result perhaps acting
as a middle-ground between combinations 12, 63, 69 and combination 79.

Table 14: Top five performing combinations for the Korns-12 benchmark.

Combination Program Length # Calculation Registers Operation Set Micro/Macro Mutation
Rate

12 Restrictive Conservative Conservative Exploration

63 Generous Conservative Restrictive Exploration

69 Generous Conservative Generous Exploration

71 Generous Conservative Generous Exploitation

79 Generous Generous Generous Balanced

Nguyen-7
Nguyen-7 performs optimally in cases where a restrictive number of calculation

registers and a restrictive/conservative operation set are applied. Combined with an
exploitative search, the top five combinations employ configurations with a tendency
towards restrictive parameters. In contrast, combination 61 provides programs with
greater complexity due to a generous program length and operation set, but appears to
be countered by a balanced mutation rate. The rest of the top performing combinations
are situated in close relational proximity to each other (see Figure 25). It should be
noted that a small amount of jitter is added to the points to prevent overlap.

Figure 24 further illustrates the bias of well-performing combinations towards
restrictive combinations, especially with regards to number of calculation registers
and operation set. Combinations with a restrictive number of calculation registers
and operation set showed less range in terms of fitness, with a majority of solutions
situated close to the left-skewed median value (see Figure 24b,c).

Furthermore, better overall performance is given by the generous macro/micro-
mutation rate setting (exploitative search) in comparison to a conservative/restrictive
setting. A majority of solutions are situated around the median, which is comparatively
low (given in Figure 24d).
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Figure 24: Distribution of average fitness as a function of combination parameter
type. Nguyen-7 shows an inclination towards restrictive combinations — notably
those with a restrictive number of calculation registers and operation set, especially in
conjunction with an exploitative search.

Figure 25: Illustration of the distribution of the different combinations in combination
space for the Nguyen-7 problem. The top five performing combinations are highlighted
and mainly reside in the conservative area (centre) of the spectrum.
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Table 15: Top five performing combinations for the Nguyen-7 benchmark.

Combination Program Length # Calculation Registers Operation Set Micro/Macro Mutation
Rate

2 Restrictive Restrictive Restrictive Exploitation

5 Restrictive Restrictive Conservative Exploitation

29 Conservative Restrictive Restrictive Exploitation

56 Generous Restrictive Restrictive Exploitation

61 Generous Restrictive Generous Balanced

Pagie-1
Figure 26 shows the relationship between fitness and the four different parameters

targeted. There are two clear trends to notice in this visualisation. Firstly, a generous
setting of program length and calculation registers enables the system to find better
solutions (e.g. Figure 26a,b). While the median is roughly equivalent between
settings, the lower quartile and minimum of the generous setting for program length
and calculation registers are considerably lower than for other settings. Figure 27
supports these observations as the top five performing combinations fall on the
generous side of the spectrum.

Secondly, in terms of operation set there is an indication that a conservative/gener-
ous setting performs best, whereas a restrictive setting drastically hinders the fitness
performance of the system. In Figure 28, this relationship between operation set and
average fitness becomes more apparent; average fitness deteriorates significantly where
a restrictive setting is utilised. Also of considerable interest is how a conservative
setting tends to have a slight edge over a generous setting, perhaps relating to the
expansion of the search space imposed by a larger operation set.

Figure 26: Distribution of average fitness as a function of combination parameter
type. Notably, a generous program length and calculation register setting allows for
better solutions to be found during the evolutionary process.
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Figure 27: Illustration of the distribution of the different combinations in combi-
nation space for the Pagie-1 problem. The top five performing combinations are
highlighted and gravitate towards the generous side of the spectrum, which may be a
result of the problems relative difficulty.

Figure 28: Individual combination performance on the Pagie-1 benchmark. The
colour of the bars is a function of the fitness with the particular range defined by
the colour bar on the left of the plot. A black dashed overlay line highlights the
interaction between the operation set setting and the combination performance.
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Vladislavleva-4
Vladislavleva-4 shows less variation in terms of average fitness suggesting that the

system narrows down on a set of relatively well-performing solutions with relative
ease, which may be due to the settings causing a focus on local optima.

Generally, Vladislavleva-4 is able to find slightly better solutions with a restrictive
mutation rate setting (shown in Figure 29d); a restrictive setting specifies a more
exploratory search through a bias towards macro-mutations. In contrast to other
benchmarks, Vladislavleva-4 is the only problem to favour the more destructive
macro-mutations, possibly influenced by the system’s aforementioned tendency to
converge on local optima. Macro-mutations drastically alter the function of the
program and a higher probability of such operations could potentially aid in escaping
localised areas of the solution space.

Figure 29: Distribution of average fitness as a function of combination parameter
type. Vladislavleva-4 shows less variation as a result of the effects of program length
and number of calculation registers.

Other parameters demonstrate a similar trend to that of previous benchmarks: a
generous program length and number of calculation registers has a minor advantage
over other settings, allowing for some degree of lower fitness solutions to be unearthed
(as per Figure 29a,b). A conservative operation set performs slightly better than
a generous setting, but perhaps more interesting is the way in which a restrictive
operation set is detrimental in terms of fitness (see Figure 29c). This observation aligns
with those for some of the other benchmarks, further emphasising the importance of
an operation set in allowing better solutions to be found.

Figure 30 illustrates a majority of well-performing combinations on the generous
side of the spectrum; likewise, a collection of combinations that produce a high level
of error are evident on the restrictive side.
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Figure 30: Illustration of the distribution of the different combinations in combina-
tion space for the Vladislavleva-4 problem. The top five performing combinations are
highlighted and sit somewhat further into the conservative/generous portion.

Red Wine Quality

Figure 31: Distribution of average fitness as a function of combination parameter
type. The results for the Red Wine Quality benchmark are less obvious and more
difficult to interpret. A more generous program length appears to demonstrate less
variation in average fitness.
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The results for this benchmark are more difficult to interpret, as there is a higher
degree of alignment between the various settings (restrictive, conservative, generous).
This suggests that the difference between combinations has little effect on overall
performance, potentially alluding to a necessity for low-level tuning of the parameters.

Despite this, there are some small observations to be made. As is true for the
majority of the other benchmarks, there is an overall preference towards an exploitative
search (refer to Figure 31d). Additionally, there is little evidence of an effect of
parameter setting for program length or number of calculation registers on average
fitness; however, as the program length becomes more generous, the range of average
fitness decreases (Figure 31a,b).

An interesting results is present in terms of operation set (see Figure 31c). A
conservative operation set allows for the discovery of some more ideal solutions, but
also demonstrates worse average fitness performance due to an increased discovery
rate for poorly performing solutions too.

White Wine Quality

Figure 32: Distribution of average fitness as a function of combination parameter
type. The White Wine Quality benchmark has a story story similar to the Red Wine
Quality benchmarks, with the exception of a conservative operation set providing
worse performance.

A similar story can be told for the white wine quality benchmark, but some trends
are clearer. Like most other benchmarks, an exploitative search provides the best
results (see Figure 32d). The number of calculation registers creates a more pronounced
effect on average fitness, with a generous setting providing slightly better average
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fitness. That being said, other settings allow for some lower fitness solutions to be
found. In contrast to the red wine quality benchmark, a conservative operation set
does not produce any benefits, instead having an overall negative effect on fitness.

Parkinson’s Total
The most interesting trend shown by the Parkinson’s total regression problem is in

relation to the number of calculation registers (shown in Figure 33b). As the number
of calculation registers increases, the overall range of average fitness decreases. This
kind of relationship is displayed somewhat by other benchmarks, but not in such a
clear way. A continuation from this could involve investigating if there is a point of
diminishing returns as the number of calculation registers increases.

In comparison to the other benchmarks, the results show some parallels; an ex-
ploitative search shows superior results on average and a restrictive operation set has
a negative impact on the overall fitness of solutions (Figure 33c,d).

Figure 33: Parkinson’s Total regression shows an interesting relationship between
the number of calculation registers and overall fitness. As the number of calculation
registers increases, the average fitness decreases.

Figure 33a shows some evidence that a conservative program length has a minor
advantage over other settings. It is likely that this is to account for the preferred
complexity of a more generous number of calculation registers; that is, a too generous
program length may begin to negate the benefits of additional calculation registers.

It should be noted that scatter plots for the last three benchmarks have been
omitted as they don’t provide any unique insight into particular preferences.
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5.2 Evolutionary Algorithm Comparison

5.2.1 Parameters

Parameter combinations used to configure the system for each benchmark are taken
from the best performing combinations identified in the first round of experiments. It
should be noted that these combinations do not necessarily provide the best achievable
results, only the best results amongst the combinations evaluated in the first round.
For clarity, the parameters used are summarised in Table 16.

Table 16: Parameter combinations used to configure the system for the EA compari-
son. The combinations chosen are those that performed best on each problem in the
first round of experiments.

Problem Program Length # Calculation Registers Operation Set Micro/Macro Mutation
Rate

Keijzer-6 Restrictive Restrictive Conservative Exploitation

Korns-12 Generous Conservative Generous Exploitation

Nguyen-7 Generous Restrictive Restrictive Exploitation

Pagie-1 Generous Generous Conservative Exploitation

Vladislavleva-4 Generous Generous Conservative Exploration

Red Wine Quality Generous Generous Conservative Exploitation

White Wine Quality Restrictive Conservative Generous Exploitation

Parkinsons Total Conservative Generous Conservative Exploitation

5.2.2 Fitness Comparison

Figure 34 shows the average fitness result of each EA per benchmark. Here, the
island-migration EA outperformed the other techniques in the majority of cases. The
exceptions are the Keijzer-6 and Nguyen-7 benchmarks, which show better results
under the steady-state and master-slave algorithms than the island-migration technique.
This is likely an artefact of the simplicity of these problems in comparison to the other
benchmarks, as was noted in Section 4.1.1.

The island-migration approach is typically utilised for its ability to increase the
diversity level of an EAs population (Alba et al., 2013). In the case of the Keijzer-6
and Nguyen-7 problems, it appears that the system’s ability to narrow its search
towards a particular solution is damaged by the increase in diversity. This suggests
that the island-migration technique should be utilised in situations where the EA
tends to converge early on solutions which may not necessarily be the optimum.

Pagie-1 gains the most notable fitness performance increase from the island-
migration implementation with a decrease of approximately 25% in average fitness in
comparison to the other techniques. This is likely attributed to the increased diversity
level as described later in Section 5.2.4.

The steady-state and master-slave techniques perform comparably which is an
expected result, as the core of these two algorithms is essentially the same — the only
difference being the addition of parallel processing which does not appear to have any
impact on fitness performance.
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Figure 34: Average Fitness Performance of the three EAs. Fitness is averaged
over 30 independent runs for each benchmark and categorised by the particular EA
implementation used. For all benchmarks except the Keijzer-6 and Nguyen-7 problems,
the island-migration EA has a slight advantage over the other implementations.

5.2.3 Runtime Comparison

Runtime is an important consideration when choosing an EA, due to the tendency
of EAs to run for long periods of time — particularly if the problem requires a large
amount of fitness evaluation. Figure 35 suggests that in cases where time is critical or
a large amount of fitness evaluations is required, the island-migration technique should
be avoided, as it has drastically greater runtime than other techniques. Of course the
particular problem may gain other benefits from the island-migration technique, and
thus the choice is problem dependent.

The master-slave technique provides a significant decrease in average runtime, likely
due to the way it performs time-consuming tasks (e.g. fitness evaluation) in parallel.
This benefit is most noticeable in cases where problem difficulty is relatively low, as
the speed increase tends to diminish on problems where the average runtime is quite
high (i.e. those that are more difficult).
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A possible cause for this effect could be that difficult problems tend to require
more training cases, causing the overhead of creating and aggregating threads to
partially outweigh the benefits of parallel processing. It should be noted however that
the master-slave technique still provides better runtime performance than the other
techniques across all the benchmarks tested against here.
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Figure 35: Average Runtime Performance of the three EAs. Runtime is measured
in milliseconds and averaged over 30 independent runs for each benchmark. The
master-slave EA provides a significant decrease in runtime across all benchmarks.

5.2.4 Diversity Comparison

The average diversity level for each benchmark is illustrated in Figure 36. The steady-
state and master-slave techniques perform comparably with respect to diversity — an
unsurprising result when considering that the core algorithm is fundamentally the
same between the two techniques.

On the other hand, the island-migration technique demonstrates an increased level
of diversity across all of the benchmarks tested. The Pagie-1 problem displays a
significantly higher level of diversity in comparison to the other benchmark problems,
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which is believed to be due to the usage of a particularly generous combination of
parameters to configure the system.

The combination that performed best for Pagie-1 in the initial round of experiments
specified a generous program length and number of calculation registers, with a
conservative operation set. This seems to encourage the island-migration technique
to continue growing programs with a high level of variability. This is reflected in the
fitness performance as described previously, with Pagie-1 performing considerably
better under the island-migration EA implementation.
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Figure 36: Average Diversity Level of the three EAs. Diversity is measured in terms
of edit distance to produce an average level of diversity. Edit distance is measured in
units of number of instructions. Here, the island-migration EA results in the most
diverse populations.
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5.3 Comparison to Tree-based GP and Linear Regression

5.3.1 Tree-based GP

Figure 37 provides a comparison of the fitness between the LGP implementation and a
tree-based GP (TGP) solution. Overall, the two systems perform comparatively; likely
a result of similar configurations. LGP slightly outperforms TGP on the Korns-12
benchmark. There is no clear reason as to why this may be, and as the difference in
fitness is minor there is no warrant for further investigation.
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Figure 37: Average fitness of LGP and TGP on the five synthetic benchmark
problems. Performance is essentially comparable between the two techniques with
regards to fitness.

There are no inferences that can be made regarding whether LGP performs better
on any of the synthetic benchmark problems as the performance between the tech-
niques is so closely related. Despite this, commentary can be made about the LGP
implementation. The results demonstrate that the system’s implementation is at least
as correct as the TGP based system and can perform comparatively when utilised in
similar contexts.

A more enlightening implication can be gathered from Figure 38 which compares
the average program length between LGP and TGP. LGP demonstrates an ability to
find more succinct solutions in most cases. As described previously, the two systems
perform comparably in terms of fitness, meaning that TGP requires more complex
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programs to produce similar quality results. Generally, a simpler solution is preferred
as it facilitates easier interpretation of the underlying model and integration into other
contexts (Gandomi et al., 2014).
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Figure 38: Comparison of average program length between LGP and TGP. Here,
LGP shows a relatively clear advantage; TGP generally has a much greater average
program length than LGP, despite performing comparably in terms of fitness.

TGP shows lower average program length on the Nguyen7 and Vladislavleva4
problems, but no identifiable cause for this behaviour could be determined. One
suggestion is that TGP manages to converge on a good solution more rapidly than
LGP; such a solution’s genetic material could spread through the population and
bring the average program length down. Alternatively, these results could correspond
to the inherent randomness of the tests, as the difference is rather minor.

Also of note is the disparity in average program length between LGP and TGP
on the Pagie1 problem. The average program length produced by TGP is roughly
five times greater than that of LGP. Pagie & Hogeweg (1997) mention the problems
susceptibility to bloat when using standard GP, however, this does not appear to hold
true for LGP. Brameier (2004) argue that the compactness of linear programs may
be associated to the multiple usage of registers and an implicit parsimony pressure
caused by structurally non-effective code. Although the solutions generated by LGP
are more compact, quality of the solutions in terms of fitness is equivalent to TGP,
suggesting that LGP still encounters difficulty in approximating the function.
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5.3.2 Linear Regression

A summary of the results is depicted in Figure 39. Broadly speaking, the techniques
are comparable on these particular problems. LGP performs slightly better on the
white wine quality and parkinson’s total problems, but is generally comparable. LGP
performs ideally on problems where the target is a non-linear function of the inputs
(i.e. linear regression performs poorly), as demonstrated by the results on the gene
expression survival problem. This problem is highly non-linear, and as a result LGP
produces significantly more ideal solutions. These findings suggest that while LGP
can perform comparably to linear regression in the context of certain problems, its
advantages are more pronounced with non-linear problems.
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Figure 39: Comparison of mean-absolute error between the LGP and Linear Regres-
sion techniques, with respect to the real-world regression benchmarks. Performance is
comparable between techniques on the wine quality benchmarks, but linear regression
shows an advantage on the parkinson’s data set. LGP significantly outperforms linear
regression on the gene expression survival data set.

5.4 Summary

From the three experiments conducted and their respective results, a set of conclu-
sions have been previously described. Here, those conclusions are consolidated and
summarised.
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Firstly, the system produced competitive results for all benchmarks tested against,
as well as showing comparable performance to both TGP and a standard linear
regression model. This validation indicates the system’s implementation is correct,
robust and well-suited for solving these sorts of problems.

Secondly, a demonstration of varying system configurations highlights implications
as to the reconfigurability of the system and the effect this has on results. Overall,
most of the benchmark problems had a preference towards more generous combinations
of parameters. Interestingly, lower dimensional problems signal favouring of more
restrictive parameters, as generous settings generally expand the size of the search
space — potentially negatively impacting the quality of solutions discovered. Further
work may involve implementation of a set of standard parameters that can be applied
where there is knowledge with respect to the difficulty of the problem (i.e. presets).

Lastly, the application of different EAs within the context of LGP showed promising
results. The traditional steady-state EA is outperformed by the master-slave EA in
terms of runtime, while the island-migration technique exhibits an ability to increase
the variability within the LGP population. These results suggest that some problems
may benefit from non-traditional EAs, particularly if runtime or population diversity
are a consideration. Furthermore, the implementation of two custom EAs shows
the flexibility and extensible nature of the software — a core design principle of the
system.

6 Conclusion

Within the wide landscape of open-source tools available for GP, an open-source
LGP implementation is surprisingly lacking. In contrast to other techniques, LGP
has two unique characteristics arising from its linear program representation: first,
a graph-based functional structure resulting from the way register contents are used
multiple times during computation. This structure leads to program graphs with
higher variability and the development of more compact solutions. Second, the
existence of non-effective instructions which do not have an influence on program
output. Non-effective instructions help to guard other instructions from disruption
caused by genetic operator application and enables the occurrence of neutral variations
— variations that don’t change the fitness of a program.

Motivated by the deficiency of an existing open-source implementation, the goal of
this work was to design, implement and benchmark a completely open-source LGP
system. The primary contribution is in the form of the software and is relevant to the
open-source and AI communities.

The system offers cross-platform support and a modern API through the usage of
the Kotlin programming language. Kotlin is built on the Java Virtual Machine meaning
the system is inherently cross-platform, with the addition of modern programming
language constructs. A flexible and adaptable architecture is achieved through a
modular system design, allowing custom functionality to be added where required.
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Essentially every component of the system has a modular definition, allowing for a
great degree of flexibility.

Evaluation of the system on a set of benchmark problems demonstrated the system’s
correctness and performance. A mix of synthetic and real-world symbolic regression
problems were chosen to provide a range of difficulty in terms of benchmarks.

Notably, the LGP system showed comparable performance to both TGP and linear
regression. Interestingly, LGP showed the ability to produce more succinct solutions
than TGP without a compromise in fitness performance, which is particularly important
when problems are prone to bloat. Compared to linear regression, LGP performed
equivalently on problems with a high degree of linearity but showed significant benefits
on problems where the target is a non-linear function of the inputs.

Moreover, the system’s extensibility permitted the implementation and integration
of two parallelised evolutionary algorithms which showed promising performance
characteristics: a master-slave technique produced significant average runtime benefits
while an island-migration technique promoted a greater diversity level. The evaluation
of the system exemplified its viability as a foundation to prevent others having to
implement their own LGP system.

From the platform of an open-source LGP system, the options for further work are
plentiful. For example, the implementation and validation of further LGP components
within the context of the system, such as custom search operators or evolutionary
algorithms may further advocate the usage of LGP.

Alternatively, this work did not investigate the utilisation of the system for classifi-
cation problems which further work could address. Overall, the system hopes to see
usage in place of other GP systems so that the LGP technique can be applied to a
wider range of problem domains.

The source code and binaries have been made publicly available on GitHub6. It is
expected that any future development of the system will occur through this repository.
To supplement this, API documentation7 and a usage guide8 is provided for those who
want to use the system. The API documentation is focused on the implementation
details whereas the usage guide provides a tutorial of the concepts and how they relate
to the implementation.

6https://github.com/JedS6391/LGP
7https://jeds6391.github.io/LGP/api/html/index.html
8http://lgp.readthedocs.io/en/latest/
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8 Appendix

Appendix A
Problem Example Code Definition

1 package lgp.benchmark.problems
2
3 import lgp.benchmark.*
4 import lgp.benchmark.operations.CustomOperationLoader
5 import lgp.core.environment.*
6 import lgp.core.environment.config.Config
7 import lgp.core.environment.config.ConfigLoader
8 import lgp.core.environment.constants.DoubleConstantLoader
9 import lgp.core.environment.dataset.*

10 import lgp.core.evolution.*
11 import lgp.core.evolution.fitness.FitnessCase
12 import lgp.core.evolution.fitness.FitnessFunction
13 import lgp.core.evolution.fitness.FitnessFunctions
14 import lgp.core.evolution.population.*
15 import lgp.core.modules.ModuleInformation
16 import lgp.lib.BaseInstructionGenerator
17 import lgp.lib.BaseProgramGenerator
18 import java.util.*
19
20 class Keijzer6Solution(
21 problem: String,
22 trainingResult: TrainingResult<Double>,
23 testResult: TestResult<Double>,
24 testingFitness: Double
25 ) : BenchmarkSolution<Double>(problem, trainingResult, testResult, testingFitness)
26
27 class Keijzer6Problem(options: BenchmarkOptions) : BenchmarkProblem<Double>(options) {
28
29 override val name = "Keijzer-6"
30
31 override val description = BenchmarkProblemDescription(
32 details = mapOf(
33 "Name" to this.name,
34 "Variables" to "1 (x)",
35 "Equation" to "f(x) = sum(1 / i) for i in [1, x]",
36 "Operations" to "+, -, *, /, sin, sqrt, ln, inverse",
37 "Training Set" to "E[1, 50, 1]",
38 "Testing Set" to "E[1, 120, 1]",
39 "Fitness Function" to "MSE",
40 "Author" to "Keijzer, M.",
41 "See" to "http://dl.acm.org/citation.cfm?id=1762676"
42 )
43 ).format()
44
45 override val configLoader = object : ConfigLoader {
46 override val information = ModuleInformation(
47 "Custom configuration for the Keijzer6 problem."
48 )
49
50 override fun load(): Config {
51 val config = Config().apply {
52 initialMinimumProgramLength = 30
53 initialMaximumProgramLength = 60
54 minimumProgramLength = 30
55 maximumProgramLength = 200
56 numFeatures = 1
57 constantsRate = 0.4
58 numCalculationRegisters = 8
59 populationSize = 500
60 generations = 100
61 microMutationRate = 0.75
62 macroMutationRate = 0.25
63 numOffspring = 4
64 crossoverRate = 0.5
65 }
66
67 return config
68 }
69 }
70
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71 override val constantLoader = DoubleConstantLoader(
72 constants = listOf("-1.0", "0.0", "1.0")
73 )
74
75 val trainingDatasetLoader = object : DatasetLoader<Double> {
76 val func = { x: Double ->
77 (1..x.toInt()).map { i ->
78 1.0 / i
79 }.sum()
80 }
81
82 val gen = SequenceGenerator()
83
84 override val information = ModuleInformation(
85 "Generates a data set for the Keijzer6 problem."
86 )
87
88 override fun load(): Dataset<Double> {
89 val xs = gen.generate(
90 start = 1.0,
91 end = 50.0,
92 step = 1.0,
93 inclusive = true
94 ).map { x ->
95 Sample(
96 listOf(Feature(name = "x", value = x))
97 )
98 }.toList()
99

100 val ys = xs.map { x ->
101 this.func(x.feature("x").value)
102 }
103
104 return Dataset(xs.toList(), ys.toList())
105 }
106 }
107
108 val testDatasetLoader = object : DatasetLoader<Double> {
109 val func = { x: Double ->
110 (1..x.toInt()).map { i ->
111 1.0 / i
112 }.sum()
113 }
114
115 val gen = SequenceGenerator()
116
117 override val information = ModuleInformation(
118 "Generates a data set for the Keijzer6 problem."
119 )
120
121 override fun load(): Dataset<Double> {
122 val xs = gen.generate(
123 start = 1.0,
124 end = 120.0,
125 step = 1.0,
126 inclusive = true
127 ).map { x ->
128 Sample(
129 listOf(Feature(name = "x", value = x))
130 )
131 }.toList()
132
133 val ys = xs.map { x ->
134 this.func(x.feature("x").value)
135 }
136
137 return Dataset(xs, ys.toList())
138 }
139 }
140
141 override val defaultValueProvider = DefaultValueProviders.constantValueProvider(1.0)
142
143 override val fitnessFunction: FitnessFunction<Double> = { outputs, cases ->
144 val mse = (FitnessFunctions.MSE())(outputs, cases)
145
146 mse
147 }
148
149 override val operationLoader = CustomOperationLoader(
150 listOf(
151 lgp.lib.operations.Addition::class.java,
152 lgp.lib.operations.Subtraction::class.java,
153 lgp.lib.operations.Multiplication::class.java,
154 lgp.lib.operations.Division::class.java,
155 lgp.lib.operations.Sine::class.java,
156 lgp.benchmark.operations.SquareRoot::class.java,
157 lgp.benchmark.operations.NaturalLog::class.java,
158 lgp.benchmark.operations.Inverse::class.java
159 )
160 )
161
162 override val registeredModules = ModuleContainer(
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163 modules = mutableMapOf(
164 CoreModuleType.InstructionGenerator to {
165 BaseInstructionGenerator(environment)
166 },
167 CoreModuleType.ProgramGenerator to {
168 BaseProgramGenerator(environment, sentinelTrueValue = 1.0)
169 },
170 CoreModuleType.SelectionOperator to {
171 TournamentSelection(environment, tournamentSize = 4)
172 },
173 CoreModuleType.RecombinationOperator to {
174 LinearCrossover(
175 environment,
176 maximumSegmentLength = 6,
177 maximumCrossoverDistance = 5,
178 maximumSegmentLengthDifference = 3
179 )
180 },
181 CoreModuleType.MacroMutationOperator to {
182 MacroMutationOperator(
183 environment,
184 insertionRate = 0.5,
185 deletionRate = 0.5
186 )
187 },
188 CoreModuleType.MicroMutationOperator to {
189 MicroMutationOperator(
190 environment,
191 registerMutationRate = 0.33,
192 operatorMutationRate = 0.33,
193 constantMutationFunc = {
194 v -> v + (Random().nextGaussian() * 1.0)
195 }
196 )
197 }
198 )
199 )
200
201 override fun initialiseEnvironment() {
202 this.environment = Environment(
203 this.configLoader,
204 this.constantLoader,
205 this.operationLoader,
206 this.defaultValueProvider,
207 this.fitnessFunction
208 )
209
210 this.environment.registerModules(this.registeredModules)
211 }
212
213 override fun initialiseModel() {
214 this.model = Models.SteadyState(this.environment)
215 }
216
217 override fun solve(): Keijzer6Solution {
218 try {
219 val trainer = Trainers.DistributedTrainer(
220 environment,
221 model,
222 runs = this.options.runs
223 )
224 val trainingDataset = this.trainingDatasetLoader.load()
225 val trainingResult = trainer.train(trainingDataset)
226
227 val bestModel = trainingResult.evaluations.zip(trainingResult.models)
228 .sortedBy { (evaluation, _) -> evaluation.best.fitness }
229 .map { (_, model) -> model }
230 .first()
231
232 val testDataset = this.testDatasetLoader.load()
233
234 val testResult = bestModel.test(testDataset)
235
236 val testFitness = this.fitnessFunction(
237 testResult.predicted,
238 testDataset.inputs.zip(testDataset.outputs).map { (features, target) ->
239 FitnessCase(features, target)
240 }
241 )
242
243 return Keijzer6Solution(this.name, trainingResult, testResult, testFitness)
244 } catch (ex: UninitializedPropertyAccessException) {
245 throw ProblemNotInitialisedException(
246 "The initialisation routines for this problem must be run."
247 )
248 }
249 }
250 }
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